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1 Introduction

Stochastic differential equations (SDE’s) in infinite dimensional spaces have
become an indispensible tool to the study of a variety of random phenom-
ena in natural and mathematical sciences. Since the works of [W], [I], [R],
[DP] this subject has attracted much interest. SDE’s with Gaussian noise
on infinite dimensional state spaces were studied by many authors. See e.g.
for references in the book of [DP], which provides an overview of analysis
and applications of such equations. Infinite dimensional SDE’s with jumps
typically arise in the modelling of critical phenomena. For example SDE’s
with non-Gaussian additive noise on Hilbert or conuclear spaces have been
applied to neurophysiology to describe fluctuations of membrane potentials
of neurones. See e.g. [HKRX] and the references therein. Other applications
include subjects like environmental pollution [KX1], infinite interacting par-
ticle systems [KR] and zero coupon bond markets in financial mathematics
[BDKR].

In this paper, adopting ideas in [LP], [M-BP] we give a new approach
to the study of strong solutions of SDE’s driven by a Lévy process Zt on a
separable Hilbert space H. More specifically we focus our attention to the
investigation of global strong solutions of SDE’s of the type

dXt = γ(Xt−)dZt, X0 = x, 0 ≤ t ≤ T, (1.1)

where γ : H −→ R is a Borel measurable function.
Given a strong solution of equation (1.1), the main result of this paper

is an explicit representation of this solution under certain conditions (see
Theorem 3.2). In deriving this result we develop a white noise framework
for Lévy processes on Hilbert spaces. We use this tool to construct an explicit
distributional object which then is verified to be the strong solution.

The analysis of strong solutions is an important issue in SDE theory,
since many applications require solutions, which are functions of the driving
process. See e.g. [KR], where applications to the statistical mechanics of
infinite particle systems are discussed. Various other applications result
from stochastic control theory [K].

In this framework, beside being of interest in itself, we think that our
result can be a fruitful starting point for the analysis and understanding of
strong solutions in various directions. Interesting aspects for future research
using our explicit representation are the study of path properties and ex-
istence and uniqueness results of strong solutions of SDE’s with irregular
coefficients driven by Hilbert-space-valued Lévy processes. Employing the
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corresponding white noise techniques in the 1-dimensional setting, the au-
thors in [M-BP] derive moment conditions on the Doleans-Dade exponential
of a certain process to guarantee existence and uniqueness of strong solu-
tions of Itô diffusions. We also mention that by using different ideas [V1,2,3],
[Zv], [ZvK], [GK] obtain results for SDE’s with irregular coefficients in the
case of Euclidean Gaussian noise. See also [KR], [GM] and [FZ] for a recent
development. However, for infinite dimensions very little is known, and it
would thus be of high interest to extend the ideas from [M-BP] to infinite
dimensions.

Finally let us point out that the techniques presented here potentially
carry over to inquire into the case of other types of SDE’s like Backward
stochastic differential equations or anticipative SDE’s. Other topics com-
prise long time behaviour, Markov or flow property of solutions of (infinite
dimensional) SDE’s.

The structure of the remaining parts of the paper is as follows. In Section
2 we introduce a white noise framework for Lévy processes on a separable
Hilbert space. Then we apply this theory in Section 3 to deduce the explicit
representation of strong solutions of SDE (1.1).

2 Framework

In this Section we elaborate a white noise framework for infinite dimensional
Lévy processes. We will employ this theory in the forthcoming Sections to
study strong solutions of SDE‘s with irregular coefficients, whose driving
noise is given by such Lévy processes. A comprehensive and nice account of
Gaussian white noise theory can be found in the books of [HKPS], [Ku] and
[O]. For works pertaining to non-Gaussian white noise analysis we refer e.g.
to [IKu], [KDS]. See also [LP], [LØP].

Let us recollect the notion of a Lévy process on a separable Banach space
(B, ‖·‖). A B−valued adapted stochastic process (Zt)t≥0 on a filtered prob-
ability space (Ω,F , (Ft)t≥0, P ) is called a Lévy process, if it is stochastically
continuous and if it has independent and stationary increments starting at
zero, that is if Z0 = 0 a.e. and the increments Zt − Zs are independent of
Fs and have the same distribution as Zt−s, 0 ≤ s < t. Such processes can
be represented by the Lévy-Itô decomposition on Banach spaces and are
uniquely characterized by the triplet

(a, ρ, ν), (2.1)
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where a ∈ B, ρ is a centered Gaussian measure on B and where ν is a
Lévy measure on B0 := B − {0}. See e.g. [De], [AG]. The Lévy measure ν
gives information about the frequency of jumps of a certain size of the Lévy
process and is defined as a σ-finite positive measure on the Borel sets of B0,
which satisfies

λ̂(f) = exp
{∫

B0

exp
(
if(x)− 1− if(x)χ{‖x‖≤1}

)
ν(dx)

}
(2.2)

for all f ∈ Bp (dual of B), where λ̂ is the characteristic functional of a
probability measure λ on B. See [AG], [Li]. If B is a Banach space of cotype
2, it is known that the Lévy measure ν integrates the function 1 ∧ ‖x‖2 . In
the following we confine ourselves to separable Hilbert spaces B = H, which
are spaces both of type 2 and cotype 2.

We carry on to establish a white noise framework for pure jump Lévy
processes, i.e. for driftless Lévy processes on H without Gaussian part. So
we focus on Lévy processes with characteristic tiplet (0, 0, ν). The extension
of this setting to the general case of Lévy processes can be performed as e.g.
in [P].

We give the construction of our white noise space. For this purpose
define the space U = R×H0, H0 := H−{0}, and the diffusive Borel measure
π = λ× ν on U, where λ stands for the Lebesgue measure on R. Further we
consider a dense subspace Φ of L2(U, π) equipped with a consistent sequence
of Hilbert norms ‖·‖p , p ≥ 0 such that ‖·‖0 = ‖·‖L2(π) as well as

θ ‖φ‖p+1 ≥ ‖φ‖p

for all φ ∈ Φ, p ≥ 0 with fixed θ ∈ (0, 1). We make the following three
assumptions on the structure of the function space Φ (see e.g. [IKu], [LØP]):

(i) Denoting by Φp, p ≥ 0 the completions w.r.t the norms ‖·‖p and
by Φ−p their duals with corresponding norms ‖·‖−p it is assumed that the
canonical injection Φ1 ↪→ Φ0 is traceable, that is the mapping δ : U −→ Φ−1;
u 7−→ δu is continuous, where δu is the evaluation map φ 7−→ φ(u). In
addition it is required that∫

U
‖δu‖2

−1 π(du) < ∞.

(ii) The space Φ is an algebra w.r.t. to multiplication of functions and
the following inequality holds: For all p ≥ 1 there exists a constant Mp > 0
such that

‖ϕφ‖p ≤ Mp ‖ϕ‖p ‖φ‖p
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for all ϕ, φ ∈ Φ.
(iii) The chain of inclusions

Φ ↪→ L2(U, π) ↪→ Φp

constitutes a Gel’fand triplet (Φp dual of Φ) and the evaluation map δ fulfills
the condition

‖δ‖∞ :=
∫

U
‖δu‖−1 π(du) + sup

u∈U
‖δu‖−1 < ∞.

Let us mention that e.g. the Schwartz space S(Rd) satisfies the above as-
sumptions. As a consequence of (i), (ii), (iii) we find that all φ in Φ1 are
continuous and bounded and that

‖φ‖L1(π) + sup
u∈U

|φ(y)| ≤ ‖δ‖∞ ‖φ‖−1 (2.3)

holds. Moreover, since assumption (i) ensures the applicability of the famous
Bochner-Minlos theorem we conclude the existence of a unique probability
measure µ on the Borel sets of Φpsuch that∫

Φp
ei〈ω,φ〉dµ(ω) = exp

(∫
U
(eiφ(u) − 1)π(dy)

)
(2.4)

for all φ ∈ Φ, where 〈ω, φ〉 := ω(φ) denotes the action of ω ∈ Φp on φ ∈ Φ.
We call the measure µ on Ω = Φp (pure jump) Lévy white noise probability
measure. We note that in virtue of the assumptions (i), (ii), (iii) µ enjoys
the property of the first condition of analyticity in the sense of [KDS].

In the following we assume that the compensated Poisson random mea-
sure

Ñ(dt, dx) = N(dt, dx)− ν(dx)dt

associated with our Lévy process Zt is defined on the white noise probability
space

(Ω,F , P ) =
(
Φp,B(Φp), µ

)
.

The theory of holomorphic functions on infinite dimensional spaces (see e.g.
[Di]) guarantees the existence of symmetric polynomials, called generalized

Charlier polynomials Cn(ω) ∈
(
Φb⊗n

)p
(dual of the n-th completed sym-

metric tensor product of Φ with itself), from which an orthogonal basis
{Kα(ω)}α∈J of L2(µ) can be constructed as

Kα(ω) =
〈
C|α|(ω), δb⊗α

〉
. (2.5)
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The symbol J denotes the collection of all multiindices α = (α1, α2, ...),
whose entries αi ∈ N0 are finitely often non-zero. The expression δ

b⊗α stands
for the symmetrization of δ⊗α1

1 ⊗ ... ⊗ δ
⊗αj

j , where {δj}j≥1 constitutes an
orthonormal basis of L2 (π) . We choose {δj}j≥1 to be contained in Φ.

Thus every f ∈ L2(µ) has the chaos representation

f =
∑
α∈J

cαKα

with unique Fourier coefficients cα ∈ R, for which the isometry

‖f‖2
L2(µ) =

∑
α∈J

α!c2
α (2.6)

holds, where α! := α1! α1!... for α ∈ J . We continue to introduce the
stochastic test function space (S) and stochastic distribution space (S)∗.
The procedure to define these spaces corresponds to a second quantization
argument in Gaussian white noise analysis. Define the weights

Γ⊗kα =
Index(α)∏

j=1

(2j(1 + ‖δj‖2
∞))kαj (2.7)

for k ∈ Z, α ∈ J , where Index(α) := max {i : αi 6= 0} and where δj is the
L2(µ)−basis. Note that ‖δj‖∞ = supx |δj(x)| < ∞ for all j because of (2.3).
The Lévy-Hida test function space (S) can be characterized as the space
of all f ∈ L2(µ) with chaos representation f =

∑
α∈J cαKα such that the

growth condition
‖f‖2

0,k :=
∑
α∈J

α!c2
αΓ⊗kα < ∞ (2.8)

is satisfied for all k ∈ N0. The space (S) is endowed with the projective
topology based on the norms (‖·‖0,k)k∈N0 in (2.8). We define the Lévy-
Hida distribution space, denoted by (S)∗ as the topological dual of (S). By
construction we observe that

(S) ↪→ L2(µ) ↪→ (S)∗ (2.9)

is Gel’fand triplet. We enrich the structure of (S)∗ by defining a multipli-
cation � of distributions. This non-linear operation, which makes (S)∗ a
topological algebra, is called Wick product and is defined as

(Kα � Kβ)(ω) = (Kα+β)(ω), α, β ∈ J (2.10)
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Linear extension gives an operation on the whole space (S)∗ × (S)∗ . As an
example we shall mention that

〈Cn(ω), fn〉 � 〈Cm(ω), gm〉 =
〈
Cn+m(ω), fn⊗̂gm

〉
(2.11)

for fn ∈ Φb⊗nand gm ∈ Φb⊗m. See e.g. [LØP].
In the forthcoming sections we invoke the Lévy Hermite transform H

as a crucial tool to scrutinize SDE’s driven by infinite dimensional Lévy
processes. As an algebra monomorphism from (S)∗ into the algebra of power
series in infinitely many (complex) variables the Lévy Hermite transform
provides a characterization of distributions (see characterization theorem
2.3.8 in [LØP]). By exploiting the chaos expansion of distributions along the
basis {Kα(ω)}α∈J we define just as in the Gaussian case the Lévy Hermite
transform of X(ω) =

∑
α cαKα(ω) ∈ (S)∗, denoted by HX , as

HX(z) =
∑
α

cαzα ∈ C , (2.12)

where z = (z1, z2, ...) ∈ CN, i.e. in the space of complex-valued sequences,
and where zα = zα1

1 zα2
2 ... It can be e.g. shown that HX(z) in (2.12) is

absolutely convergent on the infinite dimensional neighbourhood

Kq(R) :=

(z1, z2, ...) ∈ CN :
∑
α 6=0

|zα|2 Γ⊗kα < R2

 (2.13)

for some 0 < q ≤ R < ∞. By the mapping properties of H we see that

H(X � Y )(z) = H(X)(z) · H(Y )(z)

holds for X, Y ∈ (S)∗ on some Kq(R). The latter commutation relation
gives rise to a generalization to Wick versions of complex analytical functions
g : C −→ C, whose Taylor expansion around ξ0 = H(X)(0) has real valued
coefficients: Using the proof of Theorem 2.3.8 in [LØP] one can find a unique
distribution Y ∈ (S)∗ such that

H(Y )(z) = g (H(X)(z)) (2.14)

on Kq(R) for some 0 < q ≤ R < ∞. We shall write g�(X) for Y to indicate
the Wick version of g.

For example, the Wick version of the exponential function exp can be
calculated as

exp� X =
∑
n≥0

1
n!

X�n. (2.15)
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Another important concept which we make use of in the next sections is the

(singular) white noise
•
Ñ(t, x) of the Poisson random measure Ñ(dt, dx). It

can be regarded as a formal Radon-Nikodym derivative of Ñ(dt, dx) and is
defined as

•
Ñ(t, x) =

∑
k≥1

δk(t, x)Kεk
(ω),

where

εk(j) :=
{

1, j = k
0, else

.

Denoting by ‖·‖−0,−2 the dual norm of ‖·‖0,2 it can be verified that

sup
(t,x)∈U

∥∥∥∥∥ •
Ñ(t, x)

∥∥∥∥∥
−0,−2

< ∞. (2.16)

Hence
•
Ñ(t, x) is contained in (S)∗ for all t, x. We directly ascertain that

H(
•
Ñ(t, x))(z) =

∑
k≥1

δk(t, x)zk. (2.17)

We conclude this section by pointing out an interesting property of
the Wick product. The Wick product reveals a relation to stochastic in-
tegrals w.r.t. to Ñ(dt, dx): Let Y (t, x, ω) be a predictable process such that

E
∫ T
0

∫
R0

Y 2(t, x, ω)dtν(dz) < ∞. Then Y (t, x, ω) �
•
Ñ(t, x) is λ× ν-Bochner

integrable in (S)∗ and∫ T

0

∫
H0

Y (t, x, ω) Ñ(dt, dx) =
∫ T

0

∫
H0

Y (t, x, ω) �
•
Ñ(t, x)dtν(dx). (2.18)

See [LØP] or [ØP] for similar proofs.

3 Explicit representability of strong solutions of a
pure jump Lévy diffusion

In this Section we assume that the Poisson random measure N(dt, dx) as-
sociated with the Lévy process Zt in (3.1) is constructed on the white noise
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probability space (Ω,F , µ). Our objects of study are Lévy noise driven
infinite dimensional SDE’s of the type

dXt = γ(Xt−)dZt (3.1)

=
∫

H0

γ(Xt−)xN(dt, dx), X0 = y, 0 ≤ t ≤ T ,

where Zt is the uncompensated pure jump Lévy process given by

Zt =
∫ t

0

∫
H0

xN(dt, dx) ,

and where γ is a Borel measurable function from H to R. The stochastic
integral in (3.1), which is of the form∫ t

0

∫
H0

Φ(t, x, ω)N(dt, dx),

is defined for predictable integrands Φ(t, x, ω) in the sense of [IW] in the
Hilbert space setting. For information about stochastic integration with
respect to (compensated) Poisson random measures on Banach spaces or
conuclear spaces the reader is referred to [KX3], [Ü], [Rü], [De]. We impose
on γ to be (locally) Lipschitz continuous and of linear growth. It is e.g.
shown in [KX3], [Z] that these conditions entail the existence of a unique
càdlàg adapted process Xt ∈ L2(µ;H), which globally solves (3.1) in the
strong sense. Further, we require non-degeneracy of the diffusion coefficient
γ in the sense that

|γ(y)| > 0 (3.2)

for all y ∈ H.

Remark 3.1 The degeneracy condition (3.2) guarantees the equivalence
of the jump measure of Xt and the jump measure of Zt. In the proof of
Theorem 3.4 this fact is needed to transform the compensating measure of
Xt into the Lévy measure ν under a change of probability.

In the sequel we make the restriction that the dilation measure νλ , given
by

νλ(Γ) := ν(λ · Γ),Γ ∈ B(H), (3.3)

is absolutely continuous w.r.t. to the Lévy measure ν for all λ ∈ R0. We
choose the Radon-Nikodym density of νλ, denoted by ϑ(λ, x), to be strictly
positiv.
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Example 3.2 Consider a Lévy measure ν on H, whose generalized ex-
ponent is a p−stable measure (0 < p ≤ 2). Then ν can be represented
as

ν(Γ) =
∫

R+

∫
∂B

χΓ(tx)σ(dx)t−p−1dt, Γ ∈ B(H)

for a finite measure σ on ∂B := {x ∈ H : ‖x‖ = 1} . See e.g. [Li]. Thus the
Radon-Nikodym density of the dilation νλ w.r.t. ν is given by

ϑ(λ, x) = λ−p.

We are coming to the main result of this Section.

Theorem 3.3 Assume that γ in (3.1) is locally Lipschitz continuous and
of linear growth. Retain the conditions (3.2) and (3.3). Further suppose that
either the Lévy measure ν is finite or the integrability condition

Eµ

[
exp

{
2
∫ T

0

∫
H0

(
− log(ϑ(γ(Xs−)−1, x))

+2ϑ(γ(Xs−)−1, x)− 1
)
ν(dx)ds

}]
< ∞ (3.4)

holds, where Xt is the global strong solution of (3.1). Then Xt takes the
explicit form

Xt =
∑
i≥1

αi(t)ei, (3.5)

where
αi(t) = Eeµ [〈Z̃t, ei

〉
J�T

]
and where J�T is defined as

J�T =

exp�{
∫ T

0

∫
H0

log�
(

(1 +
•
Ñ(ω, s, γ(Z̃s−)−1x))ϑ(γ(Z̃s−)−1, x)

)
N(ω̃, ds, dx)}

� exp�{
∫ T

0

∫
H0

(
1− (1 +

•
Ñ(ω, s, γ(Z̃s−)−1x))ϑ(γ(Z̃s−)−1, x)

)
ν(dx)ds}.

The Wick product � refers to ω and Z̃t is a Lévy process, which has the
same characteristics as Zt on a copy (Ω̃, F̃ , µ̃) of the initial white noise space
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(Ω,F , µ). The integrals in (3.6) define (stochastic) Bochner integrals on the
Lévy-Hida space.

Remark 3.4 As stated in Theorem 3.3, the explicit representation is
always valid in case the Lévy measure ν is finite. If the Lévy process has
infinite activity, a class of SDE’s satisfying the integrability condition (3.4)
is is given by those Lévy measures with singularity of order one around zero.
For example, we could define

ν(Γ) :=
∫

R+

∫
∂B

χΓ(tx)σ(dx)ϕ(t)dt,

where

ϕ(t) =
{

t−1 , 0 < t < 1
e−t+1, t ≥ 1

,

and B is as in Example 3.2. Then

ϑ(λ, x) =
λϕ(λ ‖x‖)

ϕ(‖x‖)
.

Here we assume that ε < γ(y) ≤ M < ∞, 0 < ε, for all y. Other prominent
examples belonging to this class in the case of finite dimensional Hilbert
spaces are the Gamma or the variance Gamma Lévy processes.

Proof (Theorem 3.3) One finds that the Hermite transform of Xt can
be written as

H(Xt)(z) = Eµ

[
XtE(

∫ T

0

∫
H0

φz(s, x)Ñ(ds, dx))
]

,

on some neighbourhood Kq(R), where φz(s, x) =
∑

k zkδk(s, x), z ∈ CN
c

and Ñ(ds, dx) = N(ds, dx) − ν(dx)ds. We can express the Doleans-Dade
exponential in the above equation by

E(
∫ T

0

∫
H0

φz(s, x)Ñ(ds, dx))

= exp{
∫ T

0

∫
H0

log(1 + φz(s, x))N(ds, dx)−
∫ T

0

∫
H0

φz(s, x)ν(dx)ds}.

on Kq(R) for some q, R. By applying the Girsanov theorem for random
measures (see [JS]), we obtain that

H(Xt)(z) = Eµ∗ [Xt]
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where µ∗ is the equivalent probability measure with density process

dµ∗

dµ
= E(

∫ T

0

∫
H0

φz(s, x)Ñ(ds, dx)).

The predictable compensation of the jump measure NX of Xt w.r.t. µ∗ can
be evaluated as

ν∗(B × Γ) =
∫

[0,T )×H0

χB×Γ(s, γ(Xs−)x) (1 + φz(s, x)) ν(dx)ds

for B × Γ ∈ B([0, T ))⊗B(H0). By assumption on the dilation measure of ν
we get that

ν∗(ds, dx) =
(
1 + φz(s, γ(Xs−)−1x)

)
ϑ(γ(Xs−)−1, x)ν(dx)ds.

Next define

ϕz(ω, s, x) =
1

(1 + φz(s, γ(Xs−)−1x))ϑ(γ(Xs−)−1, x)
− 1

on Kq(R) for some q, R. Then Lemma 3.6 below and the Girsanov theorem
imply

Eµ∗ [Xt]

= Eµ∗ [XtE−1(
∫ T

0

∫
H0

ϕz(ω̃, s, x)(NX − ν∗)(ds, dx))

E(
∫ T

0

∫
H0

ϕz(ω̃, s, x)(NX − ν∗)(ds, dx))]

= Eeµ
[
Z̃t exp{

∫ T

0

∫
H0

log
((

1 + φz(s, γ(Z̃s−)−1x)
)

ϑ(γ(Z̃s−)−1, x)
)

N(ω̃, ds, dx)

· exp{
∫ T

0

∫
H0

(
1−

(
1 + φz(s, γ(Z̃s−)−1x)

)
ϑ(γ(Z̃s−)−1, x)

)
ν(dx)ds

]
, (3.7)

for z ∈ Kq(R) with some 0 < q,R < ∞, where Z̃t ∈ H is a Lévy process

with the same characteristic triplet as Zt on a copy
(
Ω̃, F̃ , µ̃

)
of the white

noise space (Ω,F , µ) .
Because of a Lévy version of Theorem 2.6.12 in [HØUZ] and Lemma 3.5

we can apply the inverse Hermite transform on both sides of (3.7) to obtain
the result.
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Lemma 3.5 The processes Y
(i)
t :=

〈
Z̃t, ei

〉
J�T , i ≥ 1 with Z̃t and J�T as

in Theorem 3.2 are Bochner integrable w.r.t. µ̃ on (S)∗.

Proof It suffices to show that there exist q, R such that

Eeµ
[

sup
z∈Kq(R)

∣∣∣H(
〈
Z̃t, ei

〉
J�T )(z)

∣∣∣] < ∞ (3.8)

for all i ≥ 1. It can be verified that

sup
z∈Kq(R)

|φz(s, x)| ≤ R

∥∥∥∥∥ •
Ñ(s, x)

∥∥∥∥∥
−0,−2

for all s, x, (3.9)

where φz(s, x) denotes the Hermite transform of
•
Ñ(s, x) and where ‖·‖−0,−2

is the dual norm w.r.t. the completion of
(
(S), ‖·‖0,2

)
(see Section 2). Since

we have that∫ T

0

∫
H0

R

∥∥∥∥∥ •
Ñ(s, γ(Z̃s−)−1x)

∥∥∥∥∥
−0,−2

ϑ(γ(Z̃s−)−1, x)

 ν(dx)ds

=
∫ T

0

∫
H0

R

∥∥∥∥∥ •
Ñ(s, γ(Z̃s−)−1x)

∥∥∥∥∥
−0,−2

 νγ( eZs−)−1
(dx)ds

=
∫ T

0

∫
H0

R

∥∥∥∥∥ •
Ñ(s, x)

∥∥∥∥∥
−0,−2

 ν(dx)ds (3.10)

≤ const.

∫ T

0

∫
H0

∥∥∥∥∥ •
Ñ(s, x)

∥∥∥∥∥
−0,−2

2

ν(dx)ds < ∞
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we get the estimate

Eeµ
[

sup
z∈Kq(R)

∣∣∣H(
〈
Z̃t, ei

〉
J�T )(z)

∣∣∣]

≤ const.E

∥∥∥Z̃t

∥∥∥ E
∫ T

0

∫
H0


1 + R

∥∥∥∥∥ •
Ñ(s, γ(Z̃s−)−1x)

∥∥∥∥∥
−0,−2


·ϑ(γ(Z̃s−)−1, x)− 1

}
Ñ(ω̃, ds, dx)

)
· exp


∫ T

0

∫
H0


1 + R

∥∥∥∥∥ •
Ñ(s, γ(Z̃s−)−1x)

∥∥∥∥∥
−0,−2


·ϑ(γ(Z̃s−)−1, x)− 1

}
ν(dx)ds

}]
≤ const.E

∥∥∥Z̃t

∥∥∥ E
∫ T

0

∫
H0


1 + R

∥∥∥∥∥ •
Ñ(s, γ(Z̃s−)−1x)

∥∥∥∥∥
−0,−2


·ϑ(γ(Z̃s−)−1, x)− 1

}
Ñ(ω̃, ds, dx)

)]
Let

Mt

=
∫ t

0

∫
H0


1 + R

∥∥∥∥∥ •
Ñ(s, γ(Z̃s−)−1x)

∥∥∥∥∥
−0,−2

ϑ(γ(Z̃s−)−1, x)− 1

 Ñ(ω̃, ds, dx)

We infer from (3.10) and the Itô isometry that

E
[
M2

t

]
< ∞.

The latter implies that the stochastic exponential E(Mt) is square integrable
(see [LM]). In connection with the finiteness of the Lévy measure we conclude
(3.8).

Lemma 3.6 Adopt the definitions of ϕz, ν∗, µ∗ and NX in the proof of
Theorem 3.2. Suppose that either ν is finite or the integrability condition
(3.4) is fulfilled. Then the Doleans-Dade exponential

E(
∫ t

0

∫
H0

ϕz(ω̃, s, x)(NX − ν∗)(ds, dx)) (3.11)
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is a martingale on Kq(R) for some q, R.

Proof Let first the Lévy measure ν be finite and denote by M :=
ν(H0) = νλ(H0) the total mass of ν (and also of νλ). Then it is straight
forward to see that∫ t

0

∫
H0

ϕz(ω̃, s, x)(NX − ν∗)(ds, dx) < c ·M

for a constant c, and the Doleans-Dade exponential is a martingale. If the
integrability condition (3.4) is fulfilled, then using (2.16) and the inequality
(3.9) it can be shown that

Eµ∗

[{
exp

∫ T

0

∫
H0

((1 + ϕz(ω̃, s, x)) log(1 + ϕz(ω̃, s, x))− ϕz(ω̃, s, x))

ν∗(ds, dx))}]

≤ const.Eµ

[
exp

{
2
∫ T

0

∫
H0

(
− log(ϑ(γ(Xs−)−1, x))

+2ϑ(γ(Xs−)−1, x)− 1
)
ν(dx)ds

}]1/2

< ∞

on Kq(R) for some q, R. By invoking a Novikov condition in [LM] the result
follows.

Remark 3.7 (i) The condition on the dilation measure νλ in (3.3) can
be weakened by assuming that there exists a Lévy measure ν̂ such that

νλ � ν̂

for all λ in a set D ⊂ R+. In this case the proof of Theorem 3.2 carries over
to attain a similar result. However, the Lévy process Z̃t in (3.5) must be
replaced by one with Lévy measure ν̂. Further, γ is restricted to take values
in D.

(ii) If we consider instead of (3.1) the more general SDE

dXt =
∫

H0

γ(Xt−, x)N(dt, dx), X0 = y, 0 ≤ t ≤ T

with the diffusion coefficient γ : H×H → R it will be conceivable to retrieve
analogous results to Theorem 3.2 by studying more general transformations
of the Lévy measure than those of dilations.
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