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Abstract. A current issue in the theory and practice of insurance and reinsur-
ance markets is to find alternative ways of securitizing risks. Insurance compa-
nies have the possibility of investing in financial markets and therefore hedge
against their risks with financial instruments. Furthermore they can sell part
of their insurance risk by introducing insurance linked products on financial
markets. Hence insurance and financial markets may no longer be considered
as disjoint objects, but can be viewed as one arbitrage-free market. Here we
provide an introduction to how mathematical methods for pricing and hedging
financial claims such as the benchmark approach and local risk minimization
can be applied to the valuation of hybrid financial insurance products, as well
as to premium determination, risk mitigation and claim reserve management.
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1. Introduction

A current issue in the theory and practice of insurance and reinsurance markets
is to find alternative ways of securitizing risks. To this purpose, insurance com-
panies have tried to take advantage of the vast potential of capital markets by
introducing exchange-traded insurance-linked instruments such as mortality deriva-
tives and catastrophe insurance options. At the same time, insurance products such
as unit-linked life insurance contracts, where the insurance benefits depend on the
price of some specific traded stocks, offer a combination of traditional life insur-
ance and financial investment. Furthermore, new kinds of insurance instruments,
which offer protection against risks connected to macro-economic factors such as
unemployment, are recently offered on the market. Hence insurance and financial
markets may no longer be viewed as disjoint objects, but can be considered as one
arbitrage-free market. Here we provide an introduction to how mathematical meth-
ods for pricing and hedging financial claims can be applied to the valuation and
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hedging of the hybrid products mentioned above, as well as to premium determi-
nation, risk mitigation and claim reserve management. In this paper we propose to
use the benchmark approach for pricing and the (local) risk minimization method
for hedging purposes. We motivate these choices as follows.
We have already remarked that insurance markets and financial markets can be seen
as one arbitrage-free market. However insurance claims are in general not replica-
ble by other financial instruments, which implies that the hybrid market consisting
of financial and insurance products is incomplete. As a consequence, there usu-
ally exist several equivalent (local) martingale measures, corresponding to the same
numéraire, that guarantee the absence of arbitrage in the market. In incomplete
markets a pricing and hedging criterion with a corresponding equivalent (local)
martingale measure must then be selected. Rather natural and tractable are qua-
dratic hedging criteria such as mean-variance hedging and local risk minimization,
see [41] and [25] for extensive surveys. The local risk minimization approach pro-
vides for a given square-integrable contingent claim H a perfect hedge by using
strategies that are not necessarily self-financing, with (discounted) portfolio value
given by the gain of trade plus an instantaneous adjustment called the cost. The
optimal strategy, when it exists, is determined by the property of having minimal
risk, in the sense that the optimal cost is given by a square-integrable martingale
strongly orthogonal to the martingale part of the asset price process. This implies
that the optimal strategy is “self-financing on average”, i.e. remains as close as pos-
sible to being self-financing. In this setting, one can hedge a contingent claim H by
investing in the primary assets on the market and by compensating other source of
risks by using the cost. In particular (local) risk-minimization naturally appears as
suitable hedging method when market incompleteness derives by the presence of an
additional source of randomness external to the financial market (such as for ex-
ample mortality risk, catastrophe risk, insurance risks), that is “orthogonal” to the
asset price dynamics, but not necessarily independent of them and vice versa. This
is the case of market models containing financial insurance-linked instruments, such
as mortality derivatives (survival swaps, longevity bonds) recently introduced on
the markets to hedge against systematic mortality risk in life insurance contracts,
and unit-linked life insurance contracts, i.e. contracts that combine insurance bene-
fits and financial investment. Some references on this topic are for example [1], [4],
[5], [8], [9], [15], [16], [31], [32], [37] and [38].
Local risk minimization is mainly an hedging criterion and provides a no-arbitrage
price only as a “by-product” of the method, but such a valuation is not its pri-
mary objective. Hence for what concerns the pricing issue, we consider here the
benchmark approach, introduced in the literature by several authors ([20], [21],
[28], [33], [34], [35]). The benchmark approach provides a pricing rule (real-world
pricing) under the real-world probability measure P by using a particular discount-
ing factor called benchmark or P-numéraire portfolio, and does not require at all
the existence of an equivalent (local) martingale measure (ELMM). The numéraire
portfolio contains information on macro-economic influences and on risks generated
by the complex of hybrid products on the market. Hence it can be seen as a general
indicator of the market’s financial and economic conditions (cost of capital, interest
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rates, expected investment returns, macro-economic influences, market dependence
structure). Real-world pricing uses the numéraire as a measure of market perfor-
mance and then results to be more natural than pricing by selecting a particular
equivalent martingale measure. In this way we also benefit from the statistical ad-
vantages of working directly under the real-world probability measure.
Furthermore, for hedgeable claims, the real-world pricing formula gives their mini-
mal price and for non-hedgeable claims the method is consistent with (asymptotic)
utility indifference pricing as defined in [35] in a very general setting. Moreover
there is an intrinsic relation between (local) risk minimization approach and real-
world pricing, that justifies the use of the benchmark approach for pricing also in
incomplete markets. To this extent we refer to the detailed discussion contained in
Section 5.
For what concerns the application of the no-arbitrage pricing theory to premium
determination for insurance contracts, this topic has been already discussed in the
literature by several authors, see [17], [29], [40] and [42], as explained in Section 3.
Here we consider the benchmark approach also for actuarial application as more
natural pricing method with respect to the martingale methods of the standard no-
arbitrage pricing theory, since it keeps a close connection to the classical premium
calculation principles, which also use the real-world probability measure P.
Furthermore, in the case of real-world pricing of insurance contracts, we take di-
rectly in account the role of investment opportunities in assessing premiums and
reserves, since the benchmark is a direct and intuitive global indicator of (hybrid)
market performance. This is of course even more relevant for insurance structures
depending heavily on the performance of financial markets and macro-economic fac-
tors, such as for example unemployment insurance products. On the contrary the
choice of a particular martingale measure for actuarial applications appears quite
artificial, since it is exclusively determined in relation to the primitive financial as-
sets on the financial market. A detailed discussion on the relation between actuarial
premium calculation principles and real-world pricing is contained in Section 5.
The structure of the paper is the following. First of all we introduce shortly the
benchmark approach. Then in Section 3.1 we illustrate an application of real-world
pricing to premium determination for unemployment insurance products, after hav-
ing discussed no-arbitrage pricing of insurance claims in Section 3. Afterwards we
consider local risk minimization for hybrid markets: in Section 4 we recall the main
features of this hedging method and in Section 4.1 we apply it to dynamic hedging
with longevity bonds. Finally a discussion on the relation between (local) risk mini-
mization approach, real-world pricing and actuarial premium calculation principles
concludes the paper in Section 5.

2. The Benchmark Approach

As stated in the introduction, we adopt the benchmark approach for our pricing
issue. All fundamental results of this approach can be found in [35] for jump diffusion
and Itô process driven markets and in [33] for a general semimartingale market.
Let T > 0 be a finite time horizon. We consider a frictionless financial market
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model in continuous time, which is set up on a complete probability space (Ω,F ,P),
endowed with a filtration F = (Ft)0≤t<T that is assumed to satisfy Ft ⊆ F for all
t ∈ [0, T ], F0 = {∅,Ω}, as well as the usual hypotheses, see [36].
On the market, we can find d+ 1 nonnegative, adapted tradable (primary) security
account processes, represented the (d+ 1)-dimensional càdlàg semimartingale S =
(St)t∈[0,T ] = (S0

t , S
1
t , ..., S

d
t )tr

t∈[0,T ]. Here we interpret S0
t as the value of the adapted,

strictly positive savings account at time t, t ∈ [0, T ].
Let L(S) denote the space of Rd+1-valued, predictable strategies

δ = (δt)t∈[0,T ] = (δ0t , δ
1
t , ..., δ

d
t )tr

t∈[0,T ] ,

for which the corresponding gain from trading in the assets, i.e.
t∫
0

δs ·dSs, exists for

all t ∈ [0, T ].
Here, δj

t represents the units of asset j held at time t by a market participant. The
portfolio value Sδ

t at time t ∈ [0, T ] is then given by

Sδ
t = δt · St =

d∑

j=0

δj
tS

j
t .

A strategy δ ∈ L(S) is called self-financing if changes in the portfolio value are only
due to changes in the assets and not due to in- or outflow of money, i.e. if

Sδ
t = Sδ

0 +

t∫

0

δs · dSs , t ∈ [0, T ] ,

or equivalently

dSδ
t = δt · dSt .

In the sequel we won’t always request strategies to be self-financing. We write
V+

x (Vx) for the set of all strictly positive (nonnegative), finite and self financing
portfolios Sδ with initial capital Sδ

0 = x. We now introduce the notion of the P-
numéraire portfolio.

Definition 2.1. A portfolio Sδ∗ ∈ V+
1 is called P-numéraire portfolio if every non-

negative portfolio Sδ ∈ V1, discounted (or benchmarked) with Sδ∗ , forms a (F,P)-
supermartingale. In particular, we have

E
[
Sδ

σ

Sδ∗
σ

∣∣∣Fτ

]
≤ Sδ

τ

Sδ∗
τ

a.s. (2.1)

for all stopping times 0 ≤ τ ≤ σ ≤ T .

From now on, we choose the P-numraire portfolio as benchmark. We call any security,
when expressed in units of the numraire portfolio, a benchmarked security and refer
to this procedure as benchmarking. The benchmarked value of a portfolio Sδ is given
by

Ŝδ
t =

Sδ
t

Sδ∗
t

, t ∈ [0, T ].
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If a P-numéraire portfolio exists, it is unique by the supermartingale property and
Jensen’s inequality, see [3].
To establish the further modeling framework, we make the following (rather weak)
assumption, see [3], [28] or [35].

Assumption 2.2. The P-numéraire portfolio Sδ∗ ∈ V+
1 exists in our market.

If it exists, the P-numéraire portfolio is equal to the “growth optimal portfolio”
(in short: GOP), which is defined as the portfolio with the maximal growth-rate
in the market. It also satisfies several other optimality criteria, see [3], [26], [33]
and [35], and can be approximated under fairly weak assumptions by a sequence of
well-diversified portfolios (see Theorem 3.6 of [34]). The existence and uniqueness
of the P-numéraire portfolio can be shown in a sufficiently general setting, see [3],
[28] or [35].

Definition 2.3. A benchmarked nonnegative self-financing portfolio Ŝδ is a strong
arbitrage if it starts with zero initial capital, that is Ŝδ

0 = 0, and generates some
strictly positive wealth with strictly positive probability at a later time t > 0, that is
P(Ŝδ

t > 0) > 0.

With the existence of the P-numéraire portfolio and the corresponding supermartin-
gale property (2.1), strong arbitrage opportunities, as defined in Definition 2.3, are
excluded, see [33]. There could still exist some weaker forms of arbitrage, which
would require to allow for negative portfolios of total wealth, however. Because of
the (often legally established) principle of limited liability, these portfolios should
be excluded in a realistic market model: a market participant generally holds a non-
negative portfolio of total wealth, otherwise he would have to declare bankruptcy.
This holds in particular for insurance companies that must take care of several legal
constraints for trading.
Let us now consider two portfolios Sδ ∈ Vx and Sδ′ ∈ Vy with Ŝδ

T = Ŝδ′
T P−a.s. Let

the benchmarked portfolio process Ŝδ
t , t ∈ [0, T ], be a martingale and the bench-

marked portfolio process Ŝδ′
t , t ∈ [0, T ], be a supermartingale. Then

Ŝδ
t = E

[
Ŝδ

T

∣∣∣Ft

]
= E

[
Ŝδ′

T

∣∣∣Ft

]
≤ Ŝδ′

t , ∀t ∈ [0, T ] , (2.2)

and in particular

x = Ŝδ
0 ≤ Ŝδ′

0 = y .

Then Sδ (if it exists) has minimal price among all benchmarked portfolios with the
same terminal value. Hence, a rational (risk-averse) investor would always invest in
a benchmarked martingale portfolio (if it exists). This justify the following definition
of “fair” wealth processes, see [33].

Definition 2.4. A portfolio process Sδ = (Sδ
t )t≥0 is called fair if its benchmarked

value process

Ŝδ
t =

Sδ
t

Sδ∗
t

, t ∈ [0, T ] ,

forms a (F,P)-martingale.
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Definition 2.5. A T -contingent claim H is a FT -measurable random variable with
E

[
|H|
Sδ∗

T

]
<∞. We denote by

Ĥ :=
H

Sδ∗
T

(2.3)

the benchmarked payoff of the T -contingent claim H.

According to Definition 2.4, it is natural to define the so called real-world pricing
formula for a T -contingent claim H as follows:

Definition 2.6. For a T -contingent claim H the fair price Pt(H) of H at time
t ∈ [0, T ] is given by

Pt(H) := Sδ∗
t E

[
H

Sδ∗
T

∣∣∣Ft

]
= Sδ∗

t E
[
Ĥ

∣∣Ft

]
. (2.4)

Here (2.4) is addressed as real-world pricing formula.

Hence the corresponding benchmarked fair price process (P̂t)t∈[0,T ] =
(

Pt

Sδ∗
t

)
t∈[0,T ]

forms a (F,P)-martingale.

Definition 2.7. We say that a nonnegative benchmarked contingent claim Ĥ ∈
L1(FT ,P) is hedgeable if there exists a self-financing strategy δĤ = (δĤ

t )t∈[0,T ] =

(δĤ,1
t , δĤ,2

t , . . . , δĤ,d
t )tr

t∈[0,T ] such that

Ĥ = Ĥ0 +
∫ T

0

δĤ
u · dŜu. (2.5)

In the case of an hedgeable benchmarked payoff Ĥ, the real-world pricing formula
(2.4) provides the description for the fair portfolio of minimal price among all repli-
cating self-financing portfolios for Ĥ, since the benchmarked fair portfolio value
forms by definition a P-martingale. The benchmark approach allows other self-
financing hedge portfolios to exist for Ĥ, see [35]. However, these nonnegative port-
folios are not P-martingales and, as supermartingales, therefore more expensive than
the P-martingale given by the benchmarked fair portfolio process obtained by (2.4),
see (2.2).

Remark 2.8. If a T -contingent claim H and the value Sδ∗
T at time T of the P-

numéraire portfolio are independent, we get

Pt(H) = Sδ∗
t E

[ 1
Sδ∗

T

|Ft

]
E [H|Ft]

= P (t, T )E [H|Ft] , (2.6)

where P (t, T ) is the fair price at time t ≤ T of a zero-coupon bond with nominal
value one, paid at time T . This formula is often called the actuarial pricing formula.
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3. No-arbitrage Pricing of Insurance Claims

Pricing of random claims has ever been one of the core subjects in both actuarial
and financial mathematics and there exist various approaches for calculating (fair)
prices. The actuarial way of pricing usually considers the classical premium calcu-
lation principles that consist of net premium and safety loading : if H describes a
random claim, which the insurance company has to pay (eventually) in the future
at time τ , then a premium P (H) to be charged for the claim is defined by

P (H) = E
[
H

Dτ

]

︸ ︷︷ ︸
net premium

+ A

(
H

Dτ

)

︸ ︷︷ ︸
safety loading

, (3.1)

where D is a discounting factor chosen according to actuarial judgement (see also
[29] for further remarks). Note that the net premium is the expected value of H with
respect to the real-world (or objective) probability measure. Possible safety loadings
could be A( H

Dτ
) = 0 (net premium principle), A( H

Dτ
) = a · E

[
H
Dτ

]
(expected value

principle, where a ≥ 0), A( H
Dτ

) = a · Var( H
Dτ

) (variance principle, where a > 0)

or A( H
Dτ

) = a ·
√
Var( H

Dτ
) (standard deviation principle, where a > 0), see e.g.

[39]. The existence of a safety loading is justified by ruin arguments and the risk-
averseness of the insurance company.
Widely used pricing approaches in finance base on no-arbitrage assumptions (see e.g.
the famous papers of Black and Scholes [11] and Merton [30]). A financial market,
consisting of several primary assets, is assumed to be in an economic equilibrium,
in which riskless gains with positive probability (arbitrage) by trading in the assets
are impossible. A fundamental result in this context is that absence of arbitrage
is implied by the existence of an equivalent (local) martingale measure, i.e. a pro-
bability measure, which is equivalent to the real-world measure and according to
which all assets, discounted with some numéraire, are (local) martingales. There
are different versions of this result which is often called the fundamental theorem
of asset pricing (in short: FTAP), see. e.g. [18], [19], [22], [24] or [27].
Based on the FTAP, it can then be shown that, at any time t, an arbitrage-free
price Pt(H) of a (contingent) claim H (paid at time T ≥ t) can be defined by

Pt(H) := NtEQ
[
H

NT

∣∣Ft

]
, (3.2)

where Q is an equivalent (local) martingale measure and (Nt)t∈[0,T ] a discounting
factor process.
From an economic point of view both the safety loading in equation (3.1) and the
change to an equivalent (local) martingale measure in equation (3.2) express the
risk-averseness of the insurance company. Hence, there have been several attempts
to connect actuarial premium calculation principles with the financial no-arbitrage
theory. The papers [17] and [42] both describe a competitive and liquid reinsurance
market, in which insurance companies can “trade” their risks among each other.
Since riskless profits shall be excluded also in this setting, the no-arbitrage theory
applies and insurance premiums can be calculated by equation (3.2). Both papers
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actually show that under some assumptions there exist equivalent martingale mea-
sures, which explain premiums of the form (3.1), so that these principles provide
arbitrage-free prices, too.
Therefore no-arbitrage pricing theory can be applied also to actuarial premium de-
termination. To this purpose, in this paper we choose the benchmark approach, as
we have already thoroughly explained in the Introduction. In Section 5 we com-
ment extensively on the relation between actuarial premium calculation principles
and real-world pricing. We now illustrate an application of real-world pricing to
premium determination of unemployment insurance products.

3.1. Real-world Pricing for Unemployment Insurance Products

We first introduce the structure of the considered unemployment insurance pro-
ducts. The product’s basic idea is that the insurance company compensates to some
extend the financial deficiencies, which an unemployed insured person is exposed to.
Here we only consider contracts with deterministic, a priori fixed claim payments
ci, which can be interpreted as an annuity during an unemployment period, and
predefined payment dates Ti, i = 1, ..., N . An example for this kind of contracts is
given by Payment Protection Insurance (in short: PPI) products against unemploy-
ment, which are linked to some payment obligation of an obligor to its creditor.
The following details of the insurance contract are important for the later model
specifications:

- Regarding the method of premium payment, we have to differentiate between
single rates, where the whole insurance premium is paid at the beginning of the
contract, and periodical rates. For our modeling purpose, we want to focus on
calculating single premiums. This is again motivated by PPI unemployment
products, which are often sold as an add-on directly by the creditor. The
insurance company then receives a single rate from the creditor, who in turn
allocates this rate to the instalments.

- The obligor must have been employed at least for a certain period before the
contract’s conclusion. Hence we assume that she is employed at the beginning
of the contract.

We also consider three time periods that belong to the exclusion clauses of the
contracts and impact the insurance premium.

- The waiting period W starts with the beginning of the contract. If an insured
person becomes unemployed at any time of this period, he is not entitled to
receive any claim payments during the whole unemployment time.

- The deferment period D starts with the first day of unemployment. An insured
person is not entitled to receive claim payments until the end of this period.

- The third period is comparable to the waiting period and is called the re-
qualification period and denoted by R. The difference between waiting and
requalification period is their beginning. The waiting period starts with the
beginning of the contract and the requalification period with the end of any
unemployment period that occurred during the contract’s duration. If an in-
sured person becomes (again) unemployed at any time of the requalification
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period, he is not entitled to receive any claim payment during the whole time
of unemployment.

For existing unemployment insurance contracts, the waiting, deferment and requal-
ification periods currently vary from three to twelve months.
According to the contract structure defined above, the random insurance claim Hi

at the payment date Ti can be defined as

Hi(ω) := ciI{W<τ1≤Ti−D,τ2>Ti}∪
∞S

j=2
{τ2j-1−τ2j-2>R,W<τ2j-1≤Ti−D,τ2j>Ti}

(ω) , (3.3)

where (τj)j∈N with τ0 := 0 are the random jump times of the employment-unemploy-
ment process X := (Xt)t∈[0,T ] that describes at time t if the insured person is
employed (Xt = 0) or not (Xt = 1).

Assumption 3.1. Every (random) insurance claim Hi of the unemployment insur-
ance contract, paid at time Ti, is independent of the respective value Sδ∗

Ti
of the

P-numéraire portfolio at time Ti.

Under this Assumption we can apply the actuarial pricing formula (2.6), that re-
quires in this case only the conditional joint distributions of the jump times τj , j ∈ N.
However we note that this assumption may be too strong for a realistic model. The
insurance claims obviously depend on macroeconomic unemployment factors, which
in turn may have interdependencies with financial markets, represented by the P-
numéraire portfolio (or the GOP). For the study of dependence effects between the
insurance claims and the P-numéraire portfolio, we refer to [10].
Furthermore, we assume that there is the possibility of putting money on a bank
account with constant interest rate r > 0, and that the employment-unemployment
process X follows a time-homogeneous strong Markov chain with respect to P and

Ft = FX
t = σ(Xu, u ≤ t), t ∈ [0, T ].

This assumptions may again be too strong for a realistic model. Actually, the pro-
bability of an insured person of getting unemployed or employed may depend on
his past employment-unemployment development. An extension of this model can
be found in [10].
Under these hypotheses the sojourn times τj−τj−1, j ≥ 1, givenX0 = i0, i0 ∈ {0, 1},
are conditionally independent and exponentially distributed, with parameters given
by the intensity matrix

Λ =
(
λ0 −λ0

−λ1 λ1

)
(3.4)

of X. In particular, we have

P (τ1 − τ0 > t1, ..., τn − τn−1 > tn| X0 = i0) = e−λi0 t1 · ... · e−λin−1+1tn , (3.5)

where i0, i1, ..., in−1 ∈ {0, 1} with ik = 1− ik−1, t1, ..., tn ∈ [0,∞), and λi0 , ..., λin−1

are defined by (3.4), see [43].
For the sake of simplicity, we now assume that t ∈ [Tk−1,W ), that the insured
person was employed at the actual beginning of the contract (X0 = 0) and that the
first jump to unemployment τ1 has not occurred up to time t (t < τ1).
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Proposition 3.2. Under Assumptions 3.1 we obtain the insurance premiums Pt for
X0 = 0 and t ∈ [Tk−1,W ) as follows:

Pt =

NX

i=k

Sδ∗
t E

h
Ĥi

˛̨
˛Ft

i
=

NX

i=k

e−r(Ti−t)E
h
Ĥi

˛̨
˛Ft

i
(3.6)

=

NX
i=k

cie
−(r+λ1)(Ti−t)

“ λ0

λ0 − λ1

`
e−(λ0−λ1)(W−t) − e−(λ0−λ1)(Ti−D−t)´

+ λ2
0λ1

Ti−D−tZ

max{W−t,R}

yZ

R

e−(λ0−λ1)x

y−xZ

0

e−(λ0−λ1)uI0(2
p

λ0λ1u(y − x− u))dudxdy
”

,

(3.7)

where I0(x) is the modified first kind Bessel function of order 0. In general, the modified
first order Bessel function Iα(x) of order α ∈ R is given by

Iα(x) =

∞X
m=0

1

m!Γ(m + α + 1)

“x

2

”2m+α

. (3.8)

Proof. Pricing formula (3.6) derives by applying (2.6) and (3.7) by the assumptions
on the employment-unemployment process X. For further details on the proof, we
refer to [10]. ¤

Note that, due to the “loss of memory” property of X, it is sufficient to calculate
the insurance premiums for t ≤ τ1. Analogous computations deliver the price for all
the other cases, see [10].

4. (Local) Risk Minimization for Hybrid Markets

We now turn to the hedging issue. To avoid technicalities, we focus on the case
where the asset prices discounted with the saving account S0 are given by local
martingales under P. We denote by S̄ the vector of the d + 1 discounted primary

security accounts S̄ :=
(
St

S0
t

)

t∈[0,T ]

= (1, S̄1
t , . . . , S̄

d
t )tr

t∈[0,T ].

Remark 4.1. This assumption on the underlying asset price processes may appear
quite restrictive. However if we choose as discounting factor the P-numéraire port-
folio, by Assumption 2.2 and Theorem 2.4 of [26] it follows that the vector process
Ŝ of benchmarked primary security accounts is always a P-local martingale, if S is
given by a continuous semimartingale and also for a wide class of jump-diffusion
models.

Under these assumptions on the discounted financial markets, we can apply the
risk-minimization method as originally introduced in [23]. For further details, we
also refer to [41].

Definition 4.2. An L2-admissible strategy is any Rd+1-valued predictable vector pro-
cess δ = (δ)t∈[0,T ] = (δ0t , δ

1
t , . . . , δ

d
t )tr

t∈[0,T ] such that



Evaluating hybrid products: the interplay between financial and insurance markets11

(i) the associated discounted portfolio S̄δ is a square-integrable stochastic process
whose left-limit is equal to S̄δ

t− = δt · S̄t, t ∈ [0, T ],
(ii) the stochastic integral

∫
δ · dS̄ is such that

E

[∫ T

0

δ>u d[S̄]uδu

]
<∞. (4.1)

Here [S̄] = ([S̄i, S̄j ])i,j=1,...,d denotes the matrix-valued optional covariance
process of S̄.

Since the market is not complete, we also admit strategies here that are not self-
financing and may generate profits or losses over time as defined below.

Definition 4.3. For any L2-admissible strategy δ, the cost process C̄δ is defined by

C̄δ
t := S̄δ

t −
∫ t

0

δu · dS̄u − S̄δ
0 , t ∈ [0, T ]. (4.2)

Here C̄δ
t describes the total costs incurred by δ over the interval [0, t].

Definition 4.4. For an L2-admissible strategy δ, the corresponding risk at time t is
defined by

R̄δ
t := E

[(
C̄δ

T − C̄δ
t

)2
∣∣∣Ft

]
, t ∈ [0, T ],

where the cost process C̄δ, given in (4.2), is assumed to be square-integrable.

We now wish to find an L2-admissible strategy δ which minimizes the associated
risk measured by the fluctuations of its cost process in a suitable sense.

Definition 4.5. Given a discounted contingent claim H̄ ∈ L2(FT ,P), an L2-admissible
strategy δ is said to be risk-minimizing if the following conditions hold:

(i) S̄δ
T = H̄, P-a.s.;

(ii) for any L2-admissible strategy δ̃ such that S̄ δ̃
T = S̄δ

T P-a.s., we have

R̄δ
t ≤ R̄δ̃

t P− a.s. for every t ∈ [0,T].

Lemma 4.6. The cost process C̄δ associated to a risk-minimizing strategy δ is a
P-martingale for all t ∈ [0, T ].

Proof. For the proof of Lemma 4.6, we refer to [41] and [6]. ¤

The martingale property of the cost process characterizes the real-world mean-self-
financing property of the strategy δ, i.e. L2-admissible strategies that somehow are
kept “self-financing on average”.
The next result shows how to provide a risk-minimizing strategy for a given claim.
Let M2

0(P) be the space of all square-integrable martingales starting at null at the
initial time.

Proposition 4.7. Every discounted contingent claim H̄ ∈ L2(FT ,P) admits a unique
risk-minimizing strategy δ with portfolio value S̄δ and cost process C̄δ, given respec-
tively by

δ = δH̄ , S̄δ
t = E

[
H̄

∣∣Ft

]
, C̄δ

t = LH̄
t ,
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for t ∈ [0, T ], where δH̄ and LH̄ are provided by the Galtchouk-Kunita-Watanabe
(GKW) decomposition of H̄, i.e.

H̄ = H̄0 +
∫ T

0

δH̄
u · dS̄u + LH̄

T , P− a.s., (4.3)

where H̄0 ∈ R, δH̄ is an F-predictable vector process satisfying the integrability
condition (4.1) and LH̄ ∈M2

0(P) is strongly orthogonal to each component of S̄.

Proof. The proof follows from Theorem 2.4 of [41] and Lemma 4.6. ¤

Thus, the problem of minimizing risk is reduced to finding the representation (4.3).
Decomposition (4.3) is often addressed in the literature as the Föllmer-Schweizer
decomposition.
We now illustrate an application of the local risk minimization approach to hedging
of mortality derivatives.

4.1. Application to Mortality Risk: Dynamic Hedging with Longevity Bonds

A large number of life insurance and pensions products have mortality and longevity
as a primary source of risk. Life and pension insurance companies typically uses de-
terministic mortality intensities when determining premiums and reserves. However
empirical evidence (see [14] for a literature overview on this topic) shows that this
assumption is not realistic, so companies are exposed also to changes in the mortal-
ity intensity, i.e. to systematic mortality risk. This risk cannot be diversified away
by pooling (i.e. by using sufficiently large portfolios) as in the case of unsystematic
mortality risk, i.e. the risk associated with the status of individual life, but on the
contrary its impact increases for larger portfolios of insured persons. Here we use the
terminology of (systematic) mortality risk to denote all forms of deviations in aggre-
gate mortality rates from those anticipated. More precisely, it can be differentiate in
longevity risk, i.e. the risk that aggregate survival rates for given cohorts are higher
than anticipated, and short-term, catastrophic mortality risk, i.e. the risk, that over
short period of time, mortality rates are very much higher than would be normally
experienced (such as for example in the case of a pandemic influenza or a natural
catastrophe). Although mortality and longevity risk can be re-insured, traditional
reinsurance is becoming inadequate to offer sufficient protection against these risks.
Furthermore the new regulatory regime Solvency II proposal, due to be adopted
in 2012, will require insurance companies to hold significant additional capital to
guarantee their annuity liabilities if longevity risk cannot be controlled effectively.
Since existing markets provide no effective hedge for longevity and mortality risk,
recent studies ([2], [12], [13] and [14]) have highlighted the need of encouraging the
introduction of a life market in order to address the problem of an extremely fast
aging population and the risk of long retirement periods that cannot be afforded
anymore by a shrinking (younger) labor force. Hence to this purpose, new forms of
investment in mortality derivatives have been recently introduced in alternative or
as a complement to traditional reinsurance. Some examples are the followings (for
an exhaustive discussion on mortality products, we refer to [14]):
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• Longevity bonds, where coupon payments are linked to the number of survivors
in a given cohort. The first example of longevity bond in the history is rep-
resented by Tontine bonds issued by some European governments in the 17th

and 18th centuries. The first modern longevity bonds were introduced in 2004
by the European Investment Bank and BNP Paribas.

• Short-dated, mortality securities: market traded securities, whose payments
are linked to a mortality index. They allow the issuer to reduce its exposure to
short-term catastrophic mortality risk. The first bond of type was issued with
great success by Swiss Re in 2004.

• Survivor swaps, where counterparties swap a fixed series of payments for a
series of payments linked to the number of survivors in a given cohort. Until
now a small number of survivor swaps have been traded only on a over-the-
counter basis.

Other kind of products such as mortality options, i.e. financial contracts with mor-
tality rate as underlying, have been discussed only at theoretical level in the lit-
erature. The AFPEN (the association of French Pension Funds) has suggested to
introduce also an annuity futures market. Some of these new investment products
such as some longevity bonds have encountered the favor of the public. However
the establishment of a life market is still at the beginning.
As a contribution to the ongoing discussion on the introduction of longevity mar-
kets, we now consider an application of risk minimization to dynamic hedging with
longevity bonds. For further details on this issue, we refer also to [9]. The mathe-
matical setting is the following. The time of death τ > 0 of a person is modeled as a
random variable with P (τ > t) > 0 for any t ∈ [0, T ], and we denote by Ht = I{τ≤t}
the counting process of death. Let H := (Ht)t∈[0,T ] be the filtration, generated byH.
We assume that the overall information is represented by the filtration G := F∨H,
where F := (Ft)t∈[0,T ] is the augmented natural filtration of some Brownian motion
W . To avoid technical difficulties, we suppose that the hypothesis (H) holds, i.e.
every F-martingale remains a martingale in the larger filtration G. In particular, W
is a G-martingale, and then by Lévy’s characterization a G-Brownian motion. The
survival probability process G associated to τ is supposed to fulfill

Gt := P (τ > t| Ft) = exp
(
−

∫ t

0

µu du

)
=: exp (−Γt) , t ∈ [0, T ],

where the stochastic mortality intensity µ is given by an F-progressively measurable
process driven by W . The counting process martingale M associated with the one-
jump process H is given as

Mt = Ht −
∫ t

0

(1−Hu)µudu, t ∈ [0, T ]. (4.4)

For simplicity we assume here to work with a fixed constant short rate r. We now
suppose that it is possible to trade on the financial market in an instrument called
a longevity bond which has present value

Bt =
∫ t

0

e−ruGu du, t ∈ [0, T ].
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The payment generated by this bond has the form of an annuity, where the declining
rate is given by the survival probability for the age cohort of the insured person.
The (discounted) value process associated with the longevity bond is thus given by
the conditional expectation

Vt = E

[∫ T

0

e−ruGu du

∣∣∣∣∣Gt

]
, t ∈ [0, T ] . (4.5)

Remark 4.8. If we consider a benchmarked financial market Ŝt, t ∈ [0, T ], then the
pricing formula for the benchmarked value process of the longevity bond is given by

V̂t = E

[∫ T

0

Gu

Sδ∗
u

du

∣∣∣∣∣Gt

]
, t ∈ [0, T ] . (4.6)

In the case of dividends paying assets, the benchmark approach presents the dis-
advantage that we need to know the joint conditional distribution of (Sδ∗ , G) to
compute (4.6). Note however that when the interest rate is supposed to be constant
and the discounted asset prices to be local martingales, then the pricing formulas
(4.5) and (4.6) coincide, since the P-numéraire portfolio is given in this case by the
saving account S0.

We assume the existence on the market of a gratification annuity with increasing,
continuous rate payments equal to 1−Gt as long as the insured person is alive, up
to maturity T . As Gt can be inferred from the longevity index which itself bases
on realized mortality of some representative group, such an instrument rewards
longevity relative to the policyholder’s own age cohort. The present value of a
gratification annuity is given by

Ca =
∫ T

0

e−ru (1−Hu) (1−Gu) du .

Our goal is now to hedge the risk exposure from having sold the gratification annuity
by trading dynamically in the longevity bond with value process V . For this sake
we need some technical assumptions. First we assume eΓT ∈ L2(P ), and introduce
the spaces L2(W ), L2(M) consisting of all predictable θ, ψ such that

E

[∫ T

0

θ2s ds

]
<∞, E

[∫ T

0

ψ2
s dΓs

]
<∞.

The space Θ of admissible strategies consists of all predictable ϑ such that

E

[∫ T

0

ϑ2
s d 〈V 〉s

]
<∞.

In this setting the risk minimizing strategy for the gratification annuity can be
found by first computing the GKW decompositions of V and E [Ca| Gt] , t ∈ [0, T ],
with respect to the G-martingales W and M . By comparing them, one can then
deduce the Föllmer-Schweizer decomposition

E [Ca| Gt] = c+
∫ t

0

ϑ∗s dVs + V ⊥t , (4.7)
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where ϑ ∈ Θ and V ⊥ is a square integrable martingale strongly orthogonal to V
(i.e. V V ⊥ is a local martingale). For further details we refer to [9].

Theorem 4.9. Under the hypotheses above, by martingale representation, for each
u ∈ [0, T ] there exists a constant cu and a predictable process (θu,s)s∈[0,T ] ∈ L2(W ),
with θu,s = 0 if s > u, such that

E
[
e−ru (1−Gu) e−Γu

∣∣Ft

]
= cu +

∫ t∧u

0

θu,s dWs

= cu +
∫ t

0

θu,sI[0,u](s) dWs, (4.8)

for t ∈ [0, T ]. We set c :=
∫ T

0
cu du < ∞. Then the Föllmer-Schweizer decomposi-

tions of the gratification annuity Ca with respect of the longevity bond V is given
by

Ca = c+
∫ T

0

ηs dVs + V ⊥T , (4.9)

where V ⊥T =
∫ T

0+
γM

s dMs, the predictable integrand γM ∈ L2(M) is equal to

γM
s = −(1−Hs−)eΓs

∫ T

s

(
cu +

∫ u

0

θu,v dWv

)
du, s ∈ [0, T ], (4.10)

and η ∈ Θ is uniquely determined by the equation

ηsξs = (1−Hs−)eΓs

∫ T

s

θu,s du, s ∈ [0, T ]. (4.11)

Here the predictable integrand ξ ∈ L2(W ) derives by the predictable martingale
representation for the longevity bond

Vt = E

[∫ T

0

e−ruGu

∣∣∣∣∣Ft

]
= V0 +

∫ t

0

ξs dWs, t ∈ [0, T ]. (4.12)

Proof. For the proof we refer to [9]. ¤

5. Relation between (Local) Risk Minimization Approach and
Real-world Pricing

We now discuss the relation between (local) risk minimization approach and real-
world pricing. For an exhaustive discussion of the connection between risk mini-
mization approach and real-world pricing, we also refer to [6]. For further details
on the relation between the existence of the numéraire portfolio and the minimal
martingale density, see [26].
For the sake of simplicity, we assume that the underlying financial market contains
only continuous asset prices. Then by Theorem 2.4 of [26] follows that the bench-
marked asset price process Ŝ is given by a local martingale. Given a benchmarked
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contingent claim Ĥ ∈ L2(Ω,FT ,P), by Proposition 4.7 there exists a unique risk-
minimizing strategy ξĤ , that can be obtained by the Galtchouk-Kunita-Watanabe
decomposition of Ĥ with respect to Ŝ given by

Ĥ = E[Ĥ] +
∫ T

0

ξĤ
u · dŜu + LĤ

T , P− a.s., (5.1)

where ξĤ is an F-predictable vector process with E
[∫ T

0
ξĤ
u

>
d[Ŝ]uξĤ

u

]
< ∞ and

LĤ = (LĤ
t )t∈[0,T ] is a square-integrable martingale with LĤ

0 = 0, strongly orthogo-
nal to each component of Ŝ. The benchmarked portfolio’s value process associated
to ξĤ is then E

[
Ĥ

∣∣∣Ft

]
, t ∈ [0, T ], with initial value E

[
Ĥ

]
and benchmarked

cost process LĤ . Hence the real-world pricing formula (2.4) coincides at any time
t ∈ [0, T ] with the portfolio’s value of the risk-minimizing strategy for Ĥ in in-
complete markets where the benchmarked underlyings are local martingales. This
is the case not only for continuous asset price models, but also for a large class of
jump-diffusion models, see for example [35], Chapter 14, pages 513 - 549. Moreover
we also remark that the risk-minimizing strategy is independent of the choice of the
discounting factor in market models driven by continuous asset price processes or
where the orthogonal martingale structure is generated by continuous martingales.
For further details on this, we refer to [6] and [7].
Furthermore decomposition (5.1) allows us to decompose every square-integrable
benchmarked contingent claim as the sum of its hedgeable part Ĥh and its un-
hedgable part Ĥu such that we can write

Ĥ = Ĥh + Ĥu, (5.2)

where

Ĥh := Ĥ0 +
∫ T

0

ξĤ
u · dŜu (5.3)

and
Ĥu := LĤ

T . (5.4)

Here the benchmarked hedgeable part Ĥh can be replicated perfectly, i.e.

ÛHh(t) = E
[
Ĥh

∣∣∣Ft

]
= Ĥ0 +

∫ t

0

ξĤ
u · dŜu , t ∈ [0, T ], (5.5)

and ξĤ yields the fair strategy for the self-financing replication of the hedgeable
part of Ĥ. The remaining benchmarked unhedgeable part can be diversified and
will be covered through the benchmarked cost process LĤ . In particular at t = 0
the initial value of the risk-minimizing strategy coincides with the real world price
for the hedgeable part at t = 0, while the benchmarked unhedgeable part remains
totally untouched. This is reasonable because any extra trading could only create
unnecessary uncertainty and potential additional benchmarked profits or losses.
However for t > 0 the cost LĤ will be different from 0 and
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E
[
Ĥ

∣∣∣Ft

]
= E

[
Ĥh

∣∣∣Ft

]
+ LĤ

t , t ∈ [0, T ], (5.6)

can be interpreted as an actuarial valuation formula, with the difference that the
expectation term involves only the hedgeable part of the claim. The safety loading
is given here by the benchmarked cost process. For similar results on the relation
between actuarial valuation principles and mean-variance hedging, we also refer to
[40].
The connection between risk-minimization and real-world pricing is then an impor-
tant insight which both gives a clear reasoning for pricing and hedging of contingent
claims via real-world pricing also in incomplete markets, and contributes to justify
the use of the benchmark approach also for actuarial applications.
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