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Abstract

We provide a characterization in terms of Fatou closedness for weakly closed mono-

tone convex sets in the space of P-quasisure bounded random variables, where P is

a (possibly non-dominated) class of probability measures. We illustrate the relevance

of our results by applications in the field of mathematical finance.
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1 Introduction

A fundamental result attributed to Grothendieck ([Gr54, p321, Exercise 1]) and based on

the Krein-Smulian theorem (see [DS58, Theorem V.5.7]) characterizes weak*-closedness of

a convex subset of L∞P := L∞(Ω,F , P ), where (Ω,F , P ) is a probability space, by means

of a property called Fatou closedness as follows:

Theorem 1.1. Let A ⊂ L∞P be convex. Equivalent are:

(i) A is weak*-closed (i.e. closed in σ(L∞P , L
1
P )).
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(ii) A is Fatou closed, i.e. if (Xn)n∈N ⊂ A is a bounded sequence which converges P -

almost surely to X, then X ∈ A.

Theorem 1.1 is very useful and often applied in the mathematical finance literature

such as in the classic proof of the Fundamental Theorem of Asset Pricing – see e.g. [DS94]

or [DS06] – or in the dual representation of convex risk functions – see e.g. [FS04]. In

all cases the problem is that the norm dual of L∞P contains undesired singular elements,

whereas in the weak*-duality (L∞P , σ(L∞P , L
1
P )) the elements of the dual space are identified

with σ-additive measures. However, as the weak*-topology is not first-countable, verifying

that some set is weak*-closed is in general quite challenging. This is where Theorem 1.1

proves helpful.

The aim of this paper is to study the existence of a version of Theorem 1.1 for the case

when the probability measure P is replaced by a class P of probability measures on (Ω,F).

In general this class P does not allow for a dominating probability. Applications of such

a result are for instance robust versions of the Fundamental Theorem of Asset Pricing

and the Superhedging Duality Theorem as well as dual representations of convex risk

functions in robust frameworks as studied in [BK12, BN15, BFM15, Nu14]. These kind

of frameworks have become increasingly popular in the mathematical finance literature to

describe a decision maker who has to deal with the uncertainty which arises from model

ambiguity. Here the class of probability models P the decision maker takes into account

represents her degree of ambiguity about the right probabilistic model. If P = {P} there

is no ambiguity. In many models which account for model ambiguity P in fact turns out

to be a non-dominated class of probability measures.

We will show that there is a version of Theorem 1.1 in a robust probabilistic framework

(Ω,F ,P), see Theorem 3.9. Let

c(A) := sup
P∈P

P (A), A ∈ F ,

denote the capacity generated by P. Under some conditions on the convex set A and on

L∞c we obtain equivalence between

(WC) A ⊂ L∞c is σ(L∞c , cac)-closed,

(FC) A ⊂ L∞c is Fatou closed: for any bounded sequence {Xn} ⊂ A and X ∈ L∞c such

that Xn → X P-quasi surely we have that X ∈ A,

where L∞c and cac are the robust analogues of L∞P and L1
P given by the capacity c,

respectively, and P quasi sure convergence means Q-almost sure convergence under each

Q ∈ P. The conditions we have to require on A are monotonicity and a property called

P-sensitivity. Monotonicity is typically satisfied, at least in economic applications, and
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we show that P-sensitivity is indeed a necessary condition to have (WC) ⇔ (FC). If P
is dominated, P-sensitivity is always fulfilled. Another issue is that L∞c is in general not

order complete, which means that a bounded family of random variables in L∞c does not

admit an essential supremum. However, this property will be crucial for proving (WC) ⇔
(FC), and it corresponds to aggregation type results as in [Co12, STZ11]. Asking for the

existence of an essential supremum in L∞c , as we will have to, is equivalent to requiring

that the dual space of cac can be identified with L∞c , see Proposition 3.10.

We also provide a counter example showing that for non-dominated P there is no proof

of (WC) ⇔ (FC) without further requirements such as P-sensitivity, see Example 3.4.

Moreover, we illustrate that many conditions, in particular on P, one would think of in

the first place to ensure (WC) ⇔ (FC), indeed imply that P is dominated, so we are back

to Theroem 1.1. Hence, a further contribution of this paper is to provide a deeper insight

into the fallacies one might encounter when attempting to extend Theorem 1.1 to a fully

general robust case.

The paper is structured as follows: Section 2 provides a list of useful notations which

will be used throughout the paper. Section 3 contains the main results of the paper, and in

particular Theorem 3.9 is the robust version of Theorem 1.1. Finally, some applications of

Theorem 3.9 in the field of Mathematical Finance are collected in Section 4. First, Theorem

4.3 provides a dual representation of convex and quasiconvex increasing functionals in

this robust framework. Such representation results are key in the theory of convex risk

measures. Secondly, Section 4.2 applies our results to reconcile, in this general robust

setup, duality theory and the proof of the Fundamental Theorem of Asset Pricing. We

do not assume that the reader is familiar with mathematical finance, and present the

applications in a self contained way. But for the sake of brevity we do not explain the

background of the applications and rather refer to the literature for this.

2 Notation

For the sake of clarity we propose here a list of the basic notations and definitions that

we shall use throughout this paper.

Let (Ω,F) be any measurable space.

(i) ba := {µ : F → R | µ is finitely additive} and ca := {µ : F → R | µ is σ-additive}.
These are both Banach lattices once endowed with the total variation norm TV and

|µ| = µ+ + µ− where µ = µ+ − µ− is the Jordan decomposition (see [AB06] for

further details).

(ii) ba+ (resp. ca+) is the set of all positive additive (resp. σ-additive) set functions on
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(Ω,F).

(iii) In absence of any reference probability measure we have the following sets of random

variables

L := {f : Ω→ R | f isF-measurable},

L+ := {f ∈ L | f(ω) ≥ 0 ,∀ω ∈ Ω},

L∞ := {f ∈ L | f is bounded}.

In particular L∞ is a Banach space under the (pointwise) supremum norm ‖ · ‖∞
with dual space ba.

(iv) M1 ⊂ ca+ is the set of all probability measures on (Ω,F).

(v) Throughout this paper we fix set of probability measures P ⊂M1.

(vi) We introduce the sublinear expectation

c(f) := sup
Q∈P

EQ[f ], f ∈ L+

and by some abuse of notation we set the capacity c(A) := c(1A) for A ∈ F .

(vii) Let P̂, P̃ ⊆ M1. P̂ dominates P̃, denoted by P̃ � P̂, if for all A ∈ F :

sup
P∈P̂

P (A) = 0 ⇒ sup
P∈P̃

P (A) = 0.

We say that two classes P̂ and P̃ are equivalent, denoted by P̂ ≈ P̃, if P̃ � P̂ and

P̂ � P̃.

(viii) A statement holds P-quasi surely (q.s.) if the statement holds Q-almost surely (a.s.)

for any Q ∈ P.

(ix) The space of finitely additive (resp. countably additive) set functions dominated by

c is given by bac = {µ ∈ ba | µ � c} (resp. cac = {µ ∈ ca | µ � c}). Here µ � c

means: c(A) = 0 for some A ∈ F implies µ(A) = 0.

When P = {Q} we shall write baQ or caQ for sake of simplicity.

(x) We consider the quotient space Lc := L/∼ where the equivalence is given by

f ∼ g ⇔ ∀P ∈ P : P (f = g) = 1.

We shall use capital letters to distinguish equivalence classes of random variables

X ∈ Lc from a representative f ∈ X, with f ∈ L.
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(xi) For any f, g ∈ L and P ∈ M1, we write f ≤ g P -a.s. if and only if P (f ≤ g) = 1.

Similarly f ≤ g P-q.s. if and only if f ≤ g P -a.s. for all P ∈ P. This relation is

a partial order on L and thus also on L where X ≤ Y P-q.s. if and only if f ≤ g

P-q.s. for any f ∈ X and g ∈ Y .

(xii) We set L∞c := L∞/∼ and endow it with the norm

‖X‖c,∞ := inf{m | ∀P ∈ P : P (|X| ≤ m) = 1}.

(L∞c , ‖ · ‖c,∞) is a Banach lattice with partial order ≤ P-q.s. Its norm dual is bac.

In case P = {Q} we shall write L∞Q and ‖ · ‖Q,∞ for the sake of simplicity .

3 Towards a robust version of Theorem 1.1

We start by recalling the proof of Theorem 1.1: the idea is to apply the Krein-Smulian

theorem (see [FS04, Theorem A.64]) which implies that we only need to show that the

sets

CK := A ∩ {X ∈ L∞P | ‖X‖P,∞ ≤ K}

are weak*-closed for any constant K > 0. Note that the inclusion

i : (L∞P , σ(L∞P , L
1
P ))→ (L1

P , σ(L1
P , L

∞
P )) (3.1)

is continuous. Now, as A is Fatou closed, i.e. closed under bounded P -a.s. convergence, it

follows that i(CK) is a closed subset of the Banach space (L1
P , EP [| · |]), and thus i(CK) is

also weakly (i.e. σ(L1
P , L

∞
P )) closed by convexity, so eventually CK must be weak*-closed

by continuity of i.

Therefore a natural approach to prove a robust version of Theorem 1.1 is to ’robustify’

the spaces L1
P and try to repeat the argument above. There are two natural candidates

for this: Let Hc := {X ∈ L | c(|X|) < ∞}, with norm ‖X‖c := c(|X|). Then it is readily

verified that (Hc, ‖ · ‖c) is a Banach lattice. But in the robust case there is also another

candidate, namely Mc := L∞c
‖·‖c

which is also a Banach lattice with the norm ‖ ·‖c. These

spaces have recently been studied in the literature, see e.g. [DHP11] and [Nu14], since they

appear as natural environments to embed financial modelling under uncertainty. Clearly,

L∞c ⊂ Mc ⊂ Hc ⊂ L. Note that the trick with the inclusion (3.1) requires that the norm

dual of L1
P can be identified with L∞P , so in particular with a subset of L1

P where in this

latter case L1
P is viewed as a representation of caP . Thus the reader may readily check

that we could save the above argument if the norm duals M∗c and H∗c of Mc and Hc,

respectively, would satisfy M∗c ⊂ ca or H∗c ⊂ ca. The following Theorem 3.1 shows that

this is the case only if P is dominated. To this end, denote by

Z := {(An)n∈N ⊂ F | An ↓ ∅ and c(An) 6→ 0}, (3.2)
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where An ↓ ∅ means that An ⊃ An+1, An 6= ∅, n ∈ N, and
⋂
n∈NAn = ∅, the decreasing

sequences of sets on which c is not continuous.

Theorem 3.1. Consider the following conditions:

(i) Z = ∅.

(ii) M∗c ⊂ ca.

(iii) H∗c ⊂ ca.

Then (i) ⇐⇒ (ii) ⇐= (iii).

In particular, if Z = ∅, then there exists a countable subset P̃ ⊂ P such that P̃ ≈ P,

and thus there is a probability measure Q ∈M1 such that {Q} ≈ P.

Proof. (i) ⇒ (ii): By Proposition A.2 for any l ∈ M∗c there is µ ∈ ca such that l(X) =∫
X dµ for all simple random variables X. Moreover, µ ∈ cac, because c(A) = 0 implies

l(1A) = 0, A ∈ F . Since for any X ∈ L∞c and any n ∈ N by the usual approximation

method from integration theory there is a simple random variable Xn such that |X−Xn| <
1/n P-q.s., so ‖X −Xn‖c < 1/n, continuity of l and the dominated convergence theorem

yield

l(X) = lim
n→∞

l(Xn) = lim
n→∞

∫
Xn dµ =

∫
X dµ

for all X ∈ L∞c . We recall that in [DHP11] Proposition 18 the following relation was

shown

Mc = {X ∈ Hc | lim
n→∞

‖X1{|X|≥n}‖c = 0}.

Hence, for X ∈ (Mc)+ we have by monotone convergence that

l(X) = lim
n→∞

l(X1{|X|≤n}) = lim
n→∞

∫
X1{|X|≤n} dµ =

∫
X dµ.

Finally, decomposing X ∈Mc into X+−X− with X+, X− ∈ (Mc)+ and linearity of l and

the integral shows (ii).

(ii) ⇒ (i) and (iii) ⇒ (i) follow directly from Proposition A.2

The last statement of this theorem is Proposition A.1.

Remark 3.2. Note that the converse of the last statement of Theorem 3.1 is not true, i.e.

Z 6= ∅ does not imply that P is not dominated. To see this, let An ↓ ∅ and pick a sequence

of probability measures Pn such that Pn(An) = 1 for all n ∈ N, and let P = {Pn | n ∈ N}.
Then, clearly ‖1An‖c = 1 for each n. Hence, Z 6= ∅ and thus M∗c 6⊂ ca. However, we have

that {Q} ≈ P for Q =
∑∞

n=1
1

2nPn.

Recall the conditions
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(WC) A ⊂ L∞c is σ(L∞c , cac)-closed.

(FC) A ⊂ L∞c is Fatou closed: for any bounded sequence Xn ⊂ A and X ∈ L∞c such that

Xn → X P-q.s. we have that X ∈ A.

It is easily verified that always (WC) =⇒ (FC) since any bounded P-q.s. converging

sequence also converges in σ(L∞c , cac) to the same limit. However, there is in general no

proof of (FC) =⇒ (WC) even if A is convex, and also requiring monotonicity of A, i.e.

A+ (L∞c )+ = A, in addition is not sufficient:

Theorem 3.3. Let A ⊂ L∞c be convex and monotone. Without further assumptions on

P or A, there exists no proof of (FC) ⇒ (WC).

The proof of Theorem 3.3 is given by the following Example 3.4 where we give a counter-

example of (FC) =⇒ (WC) assuming the continuum hypothesis. So under the continuum

hypothesis (FC) =⇒ (WC) is indeed wrong. Note that as the continuum hypothesis does

not conflict with what one perceives as standard mathematical axioms, there is of course

no way to prove (FC) =⇒ (WC) even if we do not believe in the continuum hypothesis.

Example 3.4. Consider the measure space (Ω,F) = ([0, 1],P([0, 1]), where P([0, 1]) de-

notes the power set of [0, 1]. Assume the continuum hypothesis. Banach and Kuratowski

have shown that for any set I with the same cardinality as R there is no measure µ on

(I,P(I)) such that µ(I) = 1 and µ({ω}) = 0 for all ω ∈ I; see for instance [Du02, The-

orem C.1]. It follows that any probability measure µ over (Ω,F) must be a countable

sum of weighted Dirac-measures, i.e. µ =
∑∞

i=1 aiδωi where ai ≥ 0,
∑n

i=1 ai = 1, ωi ∈ Ω,

i ∈ N. (Recall that for ω ∈ Ω and A ∈ F : δω(A) = 1 if and only if ω ∈ A and δω(A) = 0

otherwise.) Indeed, let µ ∈M1, and let

S := {ω ∈ Ω | µ({ω}) > 0}.

Then S can at most be countable (consider the sets Sn := {ω ∈ Ω | µ({ω}) > 1/n}, n ∈ N,

and note that S =
⋃
n∈N Sn). Now suppose that µ([0, 1] \ S) > 0, then as [0, 1] \ S has the

same cardinality as [0, 1], this implies the existence of an atom for the measure µ restricted

to [0, 1] \ S, i.e. there exists ω̂ ∈ [0, 1] \ S such that

1

µ([0, 1] \ S)
µ({ω̂}) > 0.

This clearly contradicts the definition of S.

Let P := {δω | ω ∈ [0, 1]} be the set of all Dirac measures. Then

c(|X|) = sup
ω∈[0,1]

|X(ω)|,
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so it turns out that L∞c = Mc = Hc = L∞. Hence, (L∞c )∗ = M∗c = H∗c = ba, and, as

c(A) = 0 is equivalent to A = ∅, we also have that cac = ca. Consider the set

C := {1A | ∅ 6= A ⊂ [0, 1] is countable},

and let A be the convex closure of C under bounded P-q.s. convergence. Then 1 6∈ A:

Indeed, any X =
∑n

i=1 ai1Ai, ai ≥ 0,
∑n

i=1 ai = 1, 1Ai ∈ C, in the convex hull of C

satisfies 0 ≤ X ≤ 1AX where AX :=
⋃n
i=1Ai is countable. Let Xk be any sequence in

the convex hull of C, then 0 ≤ Xk ≤ 1B, k ∈ N, where B :=
⋃
k∈NAXk is countable.

Hence, Xk(ω) = 0 for all ω ∈ [0, 1] \ B, so 1 6∈ A. Now consider the family G of all

countable subsets of [0, 1] directed by A ≤ B if and only if A ⊂ B. Consider the net

{1A | A ∈ G} ⊂ C. Then for any probability measure µ there is A ∈ G (namely A = S)

such that for all B ∈ G with B ≥ A we have
∫

1B dµ = 1 =
∫

1 dµ. Thus 1 lies in the

σ(L∞c , cac)-closure of A.

In order to make the presentation simpler, we did not require monotonicity of A so

far, but the same arguments as above show that if A is the convex closure of −C + (L∞c )+

under bounded P-q.s. convergence, which is convex and monotone, then −1 6∈ A but −1 is

an element of the σ(L∞c , cac)-closure of A.

A consequence of Theorem 3.3 is that we need to ask for additional properties on A
in order to have (FC) ⇐⇒ (WC). A property which solves the problem is the so-called

P-sensitivity discussed in the following section.

3.1 P-sensitivity, ca∗c = L∞c , and (FC) ⇐⇒ (WC)

A simple property on A which allows to prove (FC) ⇐⇒ (WC) is to require that the

convex set A ⊂ L∞c behaves as in the dominated case, i.e. there is a reference probability

P ∈ P such that A is closed under bounded P -a.s. convergence. Under this assumption

the whole issue can be reduced to Theorem 1.1. Clearly, this assumption is too strong.

However, it gives the idea of the P-sensitivity property we will introduce in the following.

Given a probability Q ∈M1 such that {Q} � P we define the linear map jQ : L∞c →
L∞Q by Q(jQ(X) = X) = 1, i.e. jQ(X) is the equivalence class in L∞Q such that any

representative of jQ(X) and any representative of X are Q-a.s. identical. As caQ (which

can be identified with L1
Q) is a subset of cac, we deduce that jQ : (L∞c , σ(L∞c , cac)) →

(L∞Q , σ(L∞Q , L
1
Q)) is continuous.

Definition 3.5. A set A ⊆ L∞c is called P-sensitive if there exists a set Q ⊂ M1 with

Q � P such that

jQ(X) ∈ jQ(A) for all Q ∈ Q implies X ∈ A
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or equivalently

A =
⋂
Q∈Q

j−1
Q ◦ jQ(A).

The set Q will be called reduction set for (A,P).

Remark 3.6. Suppose that P is dominated. Then the Halmos Savage lemma (see [HS49],

Lemma 7) guarantees the existence of a countable subclass {Pi}∞i=1 such that {Pi}∞i=1 ≈ P.

Let P =
∑ 1

2i
Pi. Then P ≈ {P}, so the space L∞c can be identified with L∞P . Hence, in

that case any set A ⊆ L∞c is automatically P-sensitive with reduction set Q = {P}.

Example 3.7. The set A of Example 3.4 is not P-sensitive. Since c(A) = 0 implies that

A = ∅, any set of probabilities Q ⊂ P satisfies Q � P. Let Q ∈ M1 be arbitrary and

S := {ω ∈ [0, 1] | Q({ω}) > 0} such that Q =
∑

ω∈S aωδω with aω > 0 and
∑

ω∈S aω = 1.

Then 1S ∈ A by definition of A and thus 1 ∈ jQ(A), or to be more precise, 1 and 1S

form the same equivalence class in L∞Q . Since Q ∈ M1 was arbitrary, we have 1 ∈⋂
Q∈Q j

−1
Q ◦ jQ(A). As we know that 1 6∈ A, the set A is not P-sensitive.

Indeed P-sensitivity is a necessary condition for (FC) ⇐⇒ (WC).

Proposition 3.8. Any convex set A ⊂ L∞c which is σ(L∞c , cac)-closed (i.e. satisfies (WC))

is P-sensitive.

Proof. If A = ∅ or A = L∞c , the assertion is trivial. Now assume that A 6= ∅ and A 6= L∞c .

As A is σ(L∞c , cac)-closed and convex, the function

ρ(X) := δ(X | A) :=

0 ifX ∈ A

∞ else
, X ∈ L∞c ,

is convex and σ(L∞c , cac) lower-semicontinuous. Hence, by the Fenchel-Moreau theorem

(see [ET99, Proposition 4.1]) there exists a dual representation of ρ, i.e.

ρ(X) = sup
µ∈Q

{∫
X dµ− ρ∗(µ)

}
where Q := {µ ∈ cac | ρ∗(µ) <∞} is a convex set and

ρ∗(µ) := sup
X∈A

∫
X dµ, µ ∈ cac.

A 6= L∞c implies Q % {0} and therefore,

A =
⋂
µ∈Q

{
X ∈ L∞c |

∫
X dµ ≤ ρ∗(µ)

}
=

⋂
µ∈Q\{0}

{
X ∈ L∞c |

∫
X dµ ≤ ρ∗(µ)

}
.
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Let Q̃ := { |µ||µ|(Ω) | µ ∈ Q \ {0}} ⊂ M1 and note that Q̃ � P since Q ⊂ cac. Consider

X ∈
⋂
Q∈Q̃

j−1
Q ◦ jQ(A).

Fix Q ∈ Q̃ and ν ∈ Q such that Q = |ν|
|ν|(Ω) . Then, jQ(X) ∈ jQ(A), i.e. there is Y ∈ A

such that jQ(X) = jQ(Y ). Noting that X = jQ(X) and Y = jQ(Y ) under ν, it follows

that ∫
X dν =

∫
jQ(X) dν =

∫
jQ(Y ) dν =

∫
Y dν ≤ ρ∗(ν),

where the inequality follows from Y ∈ A. Since Q ∈ Q̃ was arbitrary, we conclude

that indeed
∫
X dµ ≤ ρ∗(µ) for all µ ∈ Q, and hence that X ∈ A. This shows that⋂

Q∈Q j
−1
Q ◦ jQ(A) ⊂ A. The other inclusion

⋂
Q∈Q j

−1
Q ◦ jQ(A) ⊃ A is trivially satisfied,

so we have that A is P-sensitive with reduction set Q̃.

The following Theorem 3.9 gives conditions under which (FC) ⇐⇒ (WC) for a convex

set A ⊂ L∞c . Besides P-sensitivity we have to require that the norm dual ca∗c of (cac, TV ),

where TV denotes the total variation norm on cac, may be identified with L∞c . Clearly

any X ∈ L∞c may be identified with a continuous linear functional on cac by

cac 3 µ 7→
∫
X dµ, (3.3)

so we always have L∞c ⊂ ca∗c . However, ca∗c = L∞c is obviously a very strong condition

which we will characterize in Proposition 3.10 in terms of the existence of the essential

supremum in the P-quasi sure sense.

Theorem 3.9. Suppose that ca∗c = L∞c and let A ⊂ L∞c be convex and monotone (A +

(L∞c )+ = A). Equivalent are

(i) A satisfies (WC).

(ii) A is P-sensitive and satisfies (FC).

Proof. We already know that (WC) implies (FC) and P-sensitivity. Now assume that A
is P sensitive and satisfies (FC). Since ca∗c = L∞c , by the Krein-Smulian theorem (see

[FS04, Theorem A.64]) it is sufficient to show that CK := A∩ {Z ∈ L∞ | ‖Z‖c,∞ ≤ K} is

σ(L∞c , cac)-closed for every K > 0. Let Q be a reduction set for (A,P) and fix any K > 0

and Q ∈ Q.

Consider the continuous inclusion

i : (L∞Q , σ(L∞Q , L
1
Q))→ (L1

Q, σ(L1
Q, L

∞
Q )).

In a first step we show that CQ,K := i ◦ jQ(CK) is ‖ · ‖Q := EQ[| · |]-closed in L1
Q,

because being convex it then follows that CQ,K is σ(L1
Q, L

∞
Q )-closed and therefore jQ(CK)
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is σ(L∞Q , L
1
Q)-closed by continuity of i. To this end let (Yn)n∈N ⊂ CQ,K and Y ∈ L1

Q such

that ‖Yn − Y ‖Q → 0, and without loss of generality we may also assume that Yn → Y

Q-a.s. Choose Xn ∈ CK such that Yn = jQ(Xn) for all n ∈ N and X ∈ L∞c such that

Y = jQ(X). Consider now the set

F := {ω ∈ Ω | Xn(ω)→ X(ω)}

(by the usual abuse of notation, in the definition of F we still write Xn and X for arbitrary

representatives of the equivalence classes Xn and X). By monotonicity of A we have that

X̃n := Xn1F+K1F c ∈ CK for all n ∈ N, and X̃n → X1F+K1F c =: X̃ P-q.s. Consequently

X̃ ∈ CK and since Q(F ) = 1 we have Y = jQ(X) = jQ(X̃) ∈ CQ,K . Hence, jQ(CK) is

σ(L∞Q , L
1
Q) closed.

By continuity of jQ, the preimage j−1
Q ◦ jQ(CK) is σ(L∞c , cac)-closed, and as also {X |

‖X‖c,∞ ≤ K} is σ(L∞c , cac)-closed, we conclude that

AQ,K := j−1
Q ◦ jQ(CK) ∩ {X | ‖X‖c,∞ ≤ K} ⊇ CK

and finally also
⋂
Q∈QAQ,K are σ(L∞c , cac)-closed. Clearly,

⋂
Q∈QAK,Q ⊇ CK . If we can

show
⋂
Q∈QAQ,K ⊆ CK , then we are done, because then

⋂
Q∈QAQ,K = CK , and thus

CK is σ(L∞c , cac)-closed. To this end, let X ∈
⋂
Q∈QAQ,K . Then jQ(X) ∈ jQ(A) for any

Q ∈ Q and therefore X ∈ A by P-sensitivity. Moreover by definition of AK,Q we also have

‖X‖c,∞ ≤ K.

Let D ⊂ L∞c . An essential supremum of D is a least upper bound of D, that is an

X ∈ L∞c such that Y ≤ X P-q.s. for all Y ∈ D, and any Z ∈ L∞c such Y ≤ Z P-q.s. for all

Y ∈ D satisfies X ≤ Z P-q.s. The essential supremum of D is denoted by ess supY ∈D Y .

Similarly an essential infimum denoted by ess infY ∈D Y of D is a greatest lower bound of

D, i.e. an essential supremum of −D.

Proposition 3.10. ca∗c = L∞c if and only if there exists an essential supremum for any

norm bounded set D ⊂ L∞c .

Proof. We first prove that the existence of an essential supremum implies ca∗c = L∞c in

four steps. To this end fix l ∈ ca∗c , and without loss of generality we may assume that the

operator norm ‖l‖∗ of l satisfies ‖l‖∗ ≤ 1.

Step 1: Let µ ∈ (cac)+. Recall that caµ, i.e. the space of measures ν on (Ω,F) such that

ν � µ, is a subset of cac which may be identified with L1
µ. Hence, l restricted to caµ

may be seen as a continuous linear functional on L1
µ, the dual of which may be identified

with L∞µ . Thus there exists an element in L∞µ and therefore also some Xµ ∈ L∞c such

that l(ν) =
∫
Xµ dν for all ν ∈ caµ. Notice that for any A ∈ F ,

∫
AXµ dν = l(1A ν) where
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1A ν(·) = ν(·∩A) ∈ cac. In particular, we can assume that ‖Xµ‖c,∞ ≤ 1 for all µ ∈ (cac)+,

because for any A ∈ F with µ(A) > 0 we have that∫
A
Xµ dµ = l(1A µ) ≤ ‖l‖∗TV (1A µ) ≤ µ(A),

so Xµ ≤ 1 µ-a.s., and thus we can exchange Xµ with Xµ1{Xµ≤1}.

Step 2: Let µ, ν ∈ (cac)+ such that ν � µ. Since caν ⊂ caµ it follows that Xν = Xµ ν-a.s.

(more precisely: f = g ν-a.s. for all f ∈ Xν and g ∈ Xµ)

Step 3: Consider the family D := {Xµ | µ ∈ (cac)+}. As D and any subfamilies are norm

bounded by step 1, the essential suprema and essential infima of these families exist. This

implies the existence of

lim inf
µ

Xµ := ess sup
ν∈(cac)+

ess inf
ν�µ

Xµ

as an essential supremum of essential infima, and also of

lim sup
µ

Xµ := ess inf
ν∈(cac)+

ess sup
ν�µ

Xµ.

As for any µ, ν ∈ (cac)+ there is ζ ∈ (cac)+ such that µ� ζ and ν � ζ (e.g. ζ = 1
2(µ+ν))

we conclude that indeed lim infµXµ ≤ lim supµXµ.

Step 4: For any µ ∈ (cac)+ we compute

l(µ) =

∫
Xµ dµ =

∫
inf
µ�ν

Xν dµ ≤
∫

lim inf
ν

Xν dµ,

where we used µ ∈ caµ in the first equality and step 2 in the second. Similarly

l(µ) =

∫
Xµ dµ =

∫
sup
µ�ν

Xν dµ ≥
∫

lim sup
ν

Xν dµ.

As lim infµXµ ≤ lim supµXµ, we must have

l(µ) =

∫
lim inf

ν
Xν dµ =

∫
lim sup

ν
Xν dµ, for all µ ∈ (cac)+.

By linearity of l we conclude that indeed

l(µ) =

∫
lim inf

ν
Xν dµ =

∫
lim sup

ν
Xν dµ, for all µ ∈ cac,

so eventually l may be identified with Y := lim infν Xν = lim supν Xν ∈ L∞c . This proves

ca∗c = L∞c .

In order to prove that ca∗c = L∞c implies the existence of an essential supremum for any

norm bounded set D ⊂ L∞c , we recall that ca and thus also cac is an so–called AL-space

([AB06, Theorem 10.56]), so ca∗c is an AM-space ([AB06, Theorem 9.27]). In particular

ca∗c is order complete, that means that for any subset of ca∗c which is order bounded from
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above there exists a least upper bound. Here, the order ≥∗ on ca∗c is given by l ≥∗ 0 if

and only if l(µ) ≥ 0 for all µ ∈ (cac)+, and a set S ⊂ ca∗c is order bounded from above

if there is h ∈ ca∗c such that h − l ≥∗ 0 for all l ∈ S; for a survey of ordered spaces we

refer to [AB06]. Any norm bounded D ⊂ L∞c is order bounded from above in ca∗c , because

Kµ(Ω) −
∫
X dµ ≥ 0, µ ∈ (cac)+, for a constant K > 0 which is an upper bound of the

norm on D, so (µ 7→ Kµ(Ω)) ∈ ca∗c is an upper bound with respect to ≥∗. Thus there is a

least upper bound of D viewed as a subset of ca∗c . Now suppose that ca∗c can be identified

with L∞c . Then this least upper bound of D may be identified with an element in X ∈ L∞c ,

that is ∫
X dµ ≥

∫
Y dµ for all µ ∈ (cac)+ and all Y ∈ D.

Considering measures µ of type 1AdP for P ∈ P and A ∈ F shows that X ≥ Y P-q.s.

for all Y ∈ D, and µ 7→
∫
X dµ being the least amongst the upper bounds of D in the

≥∗-order implies that X is an essential supremum of D.

Example 3.11. In this example we fix a measure space (Ω,F) and an uncountable family

P = {Pσ}σ∈Σ of probability measures. Consider the enlarged sigma algebra FΣ =
⋂
σ∈ΣFσ

where Fσ is the P σ completion of F , and notice that any P σ uniquely extends to FΣ. As-

sume that there exists a family of sets {Ωσ}σ∈Σ ⊆ FΣ such that for any σ ∈ Σ, P σ(Ωσ) = 1

and P σ̃(Ωσ) = 0 for σ̃ 6= σ. In this case it is easily seen that any norm bounded set

D ⊂ L∞c (Ω,FΣ) admits an essential supremum given by

ess supY ∈D Y =
∑
σ∈Σ

j−1
Pσ(ess supY ∈D jPσ(Y ))1Ωσ .

Note that ess supY ∈D jPσ(Y ) in L∞Pσ is well-defined for every σ ∈ Σ. Also notice that

ess supY ∈D Y is Fσ-measurable for any σ ∈ Σ and therefore is also FΣ-measurable. There-

fore L∞c (Ω,FΣ) = ca∗c(Ω,FΣ). We refer to [Co12] for a deeper study of this example and

applications to mathematical finance.

Example 3.12. Recall Example 3.4. Clearly any norm bounded set D ⊂ L∞c = L∞ admits

an essential supremum which is simply given by ω 7→ supY ∈D Y (ω). Hence ca∗ = ca∗c =

L∞ by Proposition 3.10. This holds without the continuum hypothesis, but is also easily

directly verified now using the continuum hypothesis: Let l ∈ ca∗c and define X(ω) = l(δω),

ω ∈ [0, 1]. Then by linearity, for all µ ∈ ca it follows that l(µ) =
∑

ω∈S aωl(δω) =
∫
X dµ

where S := {ω ∈ [0, 1] | µ({ω}) > 0} and aω = µ({ω}), ω ∈ S.

4 Applications of Theorem 3.9

4.1 Dual representation of (quasi)convex increasing functionals

Definition 4.1. A function f : L∞c → (−∞,∞] is
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• quasiconvex (resp. convex) if for every λ ∈ [0, 1] and X,Y ∈ L∞ we have f(λX +

(1− λ)Y ) ≤ max{X,Y } (resp. f(λX + (1− λ)Y ) ≤ λf(X) + (1− λ)f(Y )).

• τ -lower semicontinuous (l.s.c.) for some topology τ on L∞c if for every a ∈ R the

lower level set {X ∈ L∞c | f(X) ≤ a} is τ -closed.

• P-sensitive if the lower level sets {X ∈ L∞c | f(X) ≤ a} are P-sensitive for every

a ∈ R.

The following Lemma provides a huge class of P-sensitive functions.

Lemma 4.2. Consider a function f : L∞c → [−∞,∞] such that

f(X) = sup
P∈Q

fP (jP (X)), (4.4)

for some Q ⊂ M1 and fP : L∞P → [−∞,∞]. If Q � P then f is P-sensitive with

reduction set Q.

Proof. From representation (4.4) we automatically have

{X ∈ L∞c | f(X) ≤ a} =
⋂
P∈Q
{X ∈ L∞c | fP (jP (X)) ≤ a}.

As {X ∈ L∞c | fP (jP (X)) ≤ a} = j−1
P ◦ jP {X ∈ L∞c | fP (jP (X)) ≤ a}, we conclude that

f is P-sensitive with reduction set Q.

Theorem 4.3. Assume that ca∗c = L∞c . Let f : L∞c → (−∞,∞] be a quasiconvex (resp.

convex), monotone non decreasing ( X ≤ Y P-q.s. implies f(X) ≤ f(Y )) and P-sensitive

function. The following are equivalent:

(i) f is σ(L∞c , cac)-lower semi continuous.

(ii) f has the Fatou property: for any bounded sequence (Xn)n∈N ⊂ L∞c converging P-q.s.

to X ∈ L∞c we have f(X) ≤ lim infn→∞ f(Xn).

(iii) For any sequence (Xn)n∈N ⊂ A and X ∈ L∞c such that Xn ↑ X P-q.s. we have that

f(Xn) ↑ f(X).

(iv) f admits a bidual representation which in the quasiconvex case is

f(X) = sup
P∈cac∩M1

R (EP [X], P ) , X ∈ L∞c ,

with dual function R : R× cac → (−∞,∞] given by

R(t, µ) := sup
t′<t

inf
Y ∈L∞c

{
f(Y ) |

∫
Y dµ = t′

}
;
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and in the convex case the dual representation is

f(X) = sup
µ∈(cac)+

{∫
X dµ− f∗(µ)

}
, X ∈ L∞c ,

where the dual function f∗ : cac → (−∞,∞]) is given by

f∗(µ) := sup
Y ∈L∞c

{∫
Y dµ− f(Y )

}
.

In addition, if f(X + c) = f(X) + c for every X ∈ L∞c and c ∈ R then f is necessarily

convex and

f(X) = sup
P∈cac∩M1

{EP [X]− f∗(P )} , X ∈ L∞c .

Proof. According to Theorem 3.9 (i) holds if and only if (ii) is satisfied.

(ii) ⇒ (iii) is due to

f(X) ≤ lim inf
n→∞

f(Xn) ≤ f(X)

where the last ineqaulity follows from monotonicity. Conversely (iii) ⇒ (ii) follows by

considering Yn := ess infk≥nXk and noting that Yn ↑ X P-q.s. and f(Yn) ≤ f(Xn); see

also [FS04, Lemma 4.16].

In the convex case (i) ⇔ (iv) is Fenchel’s Theorem (see [ET99, Proposition 4.1])

together with monotonicity (see [FR02, Corollary 7]).

In the quasiconvex case showing (i)⇒ (iv) is a consequence of the Penot-Volle duality

Theorem (see [FM11, Theorem 1.1]) and together with monotonicity (see [C3M09, Lemma

8]), and (iv)⇒ (iii) follows from the monotone convergence theorem and the definition of

R.

4.2 Remarks on the First Fundamental Theorem of Asset Pricing

Pricing theory in mathematical finance is based on the Fundamental Theorem of Asset

Pricing, which roughly asserts that in a market without arbitrage opportunities (the so-

called no-arbitrage condition) discounted prices are expectations under some risk-neutral

probability measure. This characterization is essential to develop a pricing theory for

financial instruments which are not traded in the market. In the classical dominated

framework on some probability space (Ω,F , P ) the risk-neutral probability measures are

martingale measures for the discounted price process which are equivalent to the reference

probability P , see [DS06] for a detailed review.

While it is well-known that the Fundamental Theorem of Asset Pricing in a classical

dominated framework is highly related to duality arguments, recent robust approaches to

the Fundamental Theorem of Asset Pricing do not use these kind of arguments given the

difficulties we outlined in this paper, see e.g. [BN15]. However, under the conditions that
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we have derived in Section 3 we will see that it is possible to reconcile the Fundamental

Theorem of Asset Pricing, the Superhedging Duality, and duality theory on the pair

(L∞c , cac) using the well-known arguments.

Throughout this section we assume that ca∗c = L∞c holds true. We consider a discrete

time market model with terminal time horizont T ∈ N, and trading times I := {0, ..., T}.
The price process is given by a P-q.s. bounded Rd-valued stochastic process S = (St)t∈I =

(Sjt )
j=1,...,d
t∈I on (Ω,F), and we also assume the existence of a numeraire asset S0

t = 1 for

all t ∈ I. Moreover, we fix a filtration F := {Ft}t∈I such that the process S is F-adapted.

Denote by H the class of P-q.s. bounded Rd-valued, F-predictable stochastic processes,

which is the class of all admissible trading strategies. Let

C := {X ∈ L∞c | X ≤ (H • S)T P-q.s. for some H ∈ H}

where

(H • S)t :=

t∑
k=1

d∑
j=1

Hj
k(Sjk − S

j
k−1)

is the payoff of the self-financing trading strategy at time t ∈ I \{0} with initial investment

(H • S)0 = 0 given by the predictable process H = (Ht)t∈I\{0}. In this framework the no-

arbitrage condition (NA(P)) was introduced by [BN15] as given by the following definition.

Definition 4.4. The described market model is called arbitrage-free, if it satisfies the

no-arbitrage condition

NA(P) (H • S)T ≥ 0 P-q.s. implies (H • S)T = 0 P-q.s..

Note that NA(P) is equivalent to C ∩ (L∞c )+ = {0}.

Lemma 4.5. Under NA(P) if C is P-sensitive then C is σ(L∞c , cac)-closed.

Proof. [BN15, Theorem 2.2 ] shows that under NA(P) the cone C is closed under P-q.s.

convergence of sequences and therefore C satisfies (FC). We remark that [BN15, Theorem

2.2] holds in full generality without the product structure on the underlying probability

space assumed in [BN15]. Therefore applying Theorem 3.9 we deduce that C is σ(L∞c , cac)-

closed.

Suppose that C is P-sensitive. As C is a σ(L∞c , cac)-closed convex cone, the bipolar

Theorem yields

C = C00 =
{
Y ∈ L∞c | ∀Q ∈ C0

1 : EQ[Y ] ≤ 0
}

(4.5)

where C0
1 := C0 ∩M1 =

{
µ ∈ C0 | µ(1Ω) = 1

}
and C0 :=

{
µ ∈ cac | ∀X ∈ C :

∫
X dµ ≤ 0

}
.

Notice that since C ⊇ −L∞+ then µ ∈ (cac)+ for every µ ∈ C0 which explains C0
1 .
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Lemma 4.6. C0
1 is the set of all martingale measures dominated by the capacity c, that is

C0
1 = {Q� P | S is a Q-martingale}

Proof. The proof is well-known and straightforward, so we just give the basic arguments:

indeed choose any Q ∈ {Q � P | S is a Q-martingale}, and let X ∈ C and H ∈ H such

that X ≤ (H •S)T P-q.s. Then EQ[X] ≤ EQ[(H •S)T ] = (H •S)0 = 0 since ((H •S)t)t∈I

is a Q-martingale. Thus Q ∈ C0
1 .

If Q ∈ C0
1 then EQ[(H • S)T ] = 0 for any H ∈ H and by choosing appropriate strategies

in H such as Hj
t = 1A for A ∈ Ft−1, H i

t = 0 for i 6= j and Hs = 0 for s 6= t one verifies

that Q is a martingale measure for S.

Theorem 4.7 (First Fundamental Theorem of Asset Pricing).

Suppose C is P-sensitive. The following are equivalent:

(i) NA(P)

(ii) C0
1 ≈ P

Moreover, the Superhedging Duality holds, that is for any X ∈ L∞c the minimal superhedg-

ing price

π(X) := inf {x ∈ R | ∃H ∈ H s.t. x+ (H • S)T ≥ X P-q.s.}

satisfies

π(X) = sup
Q∈C01

EQ[X]. (4.6)

Proof. (i) ⇒ (ii): Clearly, c(A) = 0 implies supQ∈C01 Q(A) = 0 as C0
1 ⊂ cac. Let B ∈ F

such that Q(B) = 0 for all Q ∈ C0
1 . Thus 1B ∈ C by (4.5), so 1B = 0 in L∞c by NA(P),

i.e. c(B) = 0.

(ii) ⇒ (i): let H ∈ H such that (H • S)T ≥ 0 P-q.s. Then Q{(H • S)T ≥ 0} = 0 for every

Q ∈ C0
1 , because (H •S)t is a Q-martingale with expectation 0, and therefore (H •S)T = 0

P-q.s.

As for the Superhedging Duality note that clearly π(X) ≤ ‖X‖c,∞ since 0 ∈ H, and as

C0
1 6= ∅ (C 6= L∞c ) it follows that π(X) > −∞. Moreover, by (4.5) we have for any y ∈ R

that X − y ∈ C if and only if 0 ≥ supQ∈C01 EQ[X − y] = −y+ supQ∈C01 EQ[X] which proves

(4.6).

Finally, based on our observations so far we will consider the following stronger no-

arbitrage condition. To this end let

Pc = {P ∈M1 | P � c} and C̃ =
⋂
Q∈Pc

j−1
Q ◦ jQ(C)
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where jQ : (L∞c , σ(L∞c , cac))→ (L∞Q , σ(L∞Q , L
1
Q)) is the continuous mapping introduced in

Section 3.1. The market fullfils strong no-arbitrage if

C̃ ∩ (L∞c )+ = {0}.

Notice that C̃ is the smallest P-sensitive set which contains C. We will prove the following:

Theorem 4.8 (Weak Fundamental Theorem of Asset Pricing). Equivalent are:

(i) C̃ ∩ (L∞c )+ = {0}

(ii) there exists a family Q of martingale measures such that Q ≈ P.

Before we can prove Theorem 4.8 we need the following result:

Lemma 4.9. Under NA(P) the set C̃ is σ(L∞c , cac)-closed.

Proof. From NA(P) and [BN15, Theorem 2.2 ] we know that C satisfies (FC). Let CK :=

C ∩ {X ∈ L∞c | ‖X‖c,∞ ≤ K} for K > 0. Repeating the argument given in the proof of

Theorem 3.9 we observe that j−1
Q ◦ jQ(CK) is σ(L∞c , cac)-closed, and thus also

AQ,K := j−1
Q ◦jQ(CK)∩{X ∈ L∞c | ‖X‖c,∞ ≤ K} = j−1

Q ◦jQ(C)∩{X ∈ L∞c | ‖X‖c,∞ ≤ K}

is σ(L∞c , cac)-closed. Hence, finally also⋂
Q∈Pc

AQ,K = C̃ ∩ {X ∈ L∞c | ‖X‖c,∞ ≤ K}

is σ(L∞c , cac)-closed. As this holds for every K > 0, the Krein-Smulian Theorem implies

that C̃ is σ(L∞c , cac)-closed.

Proof of Theorem 4.8. Note that both (i) and (ii) imply NA(P). Thus C̃ is σ(L∞c , cac)-

closed by Lemma 4.9. As a consequence of the Bipolar Theorem we have

C̃ =

{
X ∈ L∞c | ∀µ ∈ C̃0

1 :

∫
X dµ ≤ 0

}
.

where C̃0
1 :=

{
µ ∈ cac | µ(1Ω) = 1,∀X ∈ C̃ :

∫
X dµ ≤ 0

}
⊂ C0

1 .

Let Q = C̃0
1 . (i) ⇔ (ii) now follows exactly as in the proof of Theorem 4.7.

A Auxiliary results for Theorem 3.1

Recall the set Z defined in (3.2).

Proposition A.1. If Z = ∅, then there exists a countable subset P̃ ⊂ P such that P̃ ≈ P.

The latter implies that there is a probability measure Q ∈M1 such that {Q} ≈ P.
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Proof. We claim that for each ε > 0, there exists P1, . . . , Pn ∈ P and δ > 0 such that

Pi(A) < δ for all i = 1, . . . , n implies that for all P ∈ P we have P (A) < ε. Suppose this

is not the case. Then there exists ε > 0 such that for any P1 ∈ P there is A1 ∈ F and

P2 ∈ P satisfying

P1(A1) < 1/2 and P2(A1) ≥ ε.

Then there also exists A2 ∈ F and P3 ∈ P such that

P1(A2) < 1/4, P2(A2) < 1/4 while P3(A2) ≥ ε.

Continuing this procedure we find sequences (An)n∈N ⊂ F and (Pn)n∈N ∈ P such that

Pi(An) <
1

2n
, i = 1, . . . , n, and Pn+1(An) ≥ ε.

Consider N :=
⋂
n∈N

⋃
k≥nAk. Then Pi(N) = 0 for each i ∈ N, because for all n > (i− 1)

Pi(N) ≤
∞∑
k=n

Pi(Ak) ≤
1

2n−1
.

Hence, replacing the above sequence An by Bn := An \N , n ∈ N, we still have

Pi(Bn) <
1

2n
, i = 1, . . . , n, and Pn+1(Bn) ≥ ε.

Now let En :=
⋃
k≥nBk, n ∈ N. It follows that En ↓ ∅. However, for each n ∈ N

c(En) ≥ Pn+1(En) ≥ Pn+1(Bn) ≥ ε

which contradicts Z = ∅.

Now let δn > 0 and let P
(n)
1 , . . . , P

(n)
m(n) ∈ P be such that for all P ∈ P it holds P (A) < 1/n

whenever P
(n)
i (A) < δn for all i = 1, . . . ,m(n). Define

µ :=

∞∑
n=1

m(n)∑
i=1

1

2n
1

2i
P

(n)
i .

Then µ ∈ ca+, and µ(A) = 0 implies that P
(n)
i (A) = 0 for all i = 1, . . . ,m(n) and n ∈ N.

Eventually this implies that for all P ∈ P we have P (A) < 1/n for all n ∈ N, hence

P (A) = 0. Thus

P̃ := {P (n)
i | i ∈ {1, . . . ,m(n)}, n ∈ N} and Q :=

1

µ(Ω)
µ

satisfy the assertion.
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Proposition A.2. Let (B, ‖ · ‖) be a Banach lattice of (equivalence classes of) random

variables on (Ω,F) containing all simple random variables such that the order ≤ on B

satisfies 0 ≤ 1A ≤ 1A′ whenever A ⊂ A′ for A,A′ ∈ F . If B∗ ⊂ ca, in the sense that every

l ∈ B∗ is of type

l(X) =

∫
X dµ, X ∈ B,

for some µ ∈ ca, then ‖1An‖ → 0 (n→∞) for all (An)n∈N ⊂ F such that An ↓ ∅.
Conversely, if ‖1An‖ → 0 (n→∞) for all (An)n∈N ⊂ F such that An ↓ ∅, then for every

l ∈ B∗ there is a µ ∈ ca such that l(Y ) =
∫
Y dµ for all simple random variables Y .

Proof. Suppose that B∗ ⊂ ca and let (An)n∈N ⊂ F such that An ↓ ∅. Then 1An → 0

with respect to σ(B,B∗) since every element in B∗ corresponds to a σ-additive measure.

Hence,

0 ∈ co{1An | n ∈ N}

where the closure is taken in the σ(B,B∗)-topology. As the closed convex set in the

σ(B,B∗)-topology and in the norm topology coincide, we have that there is a sequence of

convex combinations

ck :=

m(k)∑
i=1

ai(k)1Ani(k) , k ∈ N,

where ai(k) ∈ R and n1(k) ≤ n2(k) ≤ . . . ≤ nm(k)(k) for all k ∈ N such that ‖ck‖ → 0

for k → ∞. Moreover, since 0 ∈ co{1An | n ≥ N} for any N ∈ N, we may assume that

n1(k) ≤ n1(k + 1) for all k ∈ N. However, ck ≥ 1Ak where Ak = Anm(k)(k), because

An ⊃ An+1 for all n ∈ N. Thus, as ‖ ·‖ is a lattice norm, the subsequence 1Ak converges to

0 in norm and hence also 1An converges to 0 in the norm topology (again due to An ⊃ An+1

for all n ∈ N).

Finally suppose that ‖1An‖ → 0 (n → ∞) for all (An)n∈N ⊂ F such that An ↓ ∅. Then

for any l ∈ B∗, the set function

µ(A) := l(1A), A ∈ F ,

is σ-additive. By linearity of l we deduce that l(X) =
∫
X dµ for all simple random

variables X.
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