Trade duration risk in subdiffusive financial models∗

Lorenzo Torricelli†

February 11, 2019

Abstract

Subdiffusive processes can be used in finance to explicitly accommodate the presence of random waiting times between trades or “duration”, which in turn allows the modelling of price staleness effects. Option pricing models based on subdiffusions are incomplete, as they naturally account for the presence of a market risk of trade duration. However, when it comes to pricing this risk matters are quite subtle, since the subdiffusive Lévy structure is not maintained under equivalent martingale measure changes unless the price of this risk is set to zero. We argue that this shortcoming can be resolved by introducing the broader class of tempered subdiffusive models. We explain the role of the stability and tempering parameters, highlight some additional features of tempered models that are consistent with economic stylized facts, and show that option pricing can be performed using standard integral representations.

Keywords: Duration risk, subdiffusions, tempered subdiffusions, derivative pricing, inverse tempered stable subordinator, Lévy processes.

JEL classification: C65, G13

1 Introduction

Subdiffusive stochastic processes are used in science to model natural phenomena of slow particle displacement, typically in fluid-dynamics, hydrology, engineering and physics. Such processes allow explicit modelling of resting times between particle movements, that in finance can be interpreted as periods of idleness between subsequent equity price innovations. Transition densities of subdiffusive models are characterized as solutions of Fokker-Planck equations of fractional order, and their stochastic representations are in the form of Lévy processes time-changed with an inverse-stable subordinator (e.g. [2]).

Subdiffusions have been introduced in mathematical finance by the pioneering work of [17, 13], where price densities are assumed to follow a fractional diffusion in both space and time:

∗The author would like to thank Francesca Biagini for the useful comments.
†Ludwig Maximilians Universität Munich. Mathematics Department. Email: torricel@math.lmu.de
evidence of the consistency of this model with real financial data has been found. [11] introduces the Black-Scholes subdiffusive model, with the aim of adapting the Samuelson paradigm of normally-distributed log-returns to an illiquid market scenario.

Nevertheless full treatment of option pricing models based on subdiffusive price return models remain scarce in the literature: an example is [3], who use the Mittag-Leffler distribution to incorporate random trade waiting times in the price evolution, and study its effect on the volatility surface.

In this paper we take the view that for derivative securities valuation, the rationale of using a subdiffusive model is that of being able to incorporate in the price the risk of trade duration, i.e. random occurrence of trade times. Explicitly recognizing the random nature of waiting times during trades then embeds in the option premia the price of risk of various important financial stylized facts, such as illiquidity, or the returns impact of different levels of trading activity. In [18] for example, duration risk has the interpretation of the possibility that the regulator enforces a trading suspension.

We are interested here in studying the general model class of the type X_{Ht} where X_t is a general Lévy process and H_t an inverse-stable subordinator, which we term subdiffusive Lévy models (SL). Although the mathematics of subdiffusive Lévy processes are well understood, the martingale properties of exponential models based on subdiffusions are less studied. With a view to understanding better the risk determinants of SL, we clarify the role of measure changing in defining the risk-neutral dynamics of a subdiffusive Lévy model (SL), and deal with related question of market incompleteness. Incompletenss of subdiffusive models rests on the existence a whole family of possible equivalent measure transformations for the time change H_t under which SL models remain a martingales. This makes the concept of market price of duration risk surface. The inverse stable subordinators family is parametric, so option premia will be reflected in the risk-neutral martingale density parameters.

However, as it turns out, risk-neutral specifications of an SL model which prices duration risk is not structure-preserving for the SL class, meaning that after an EMM change risk-neutral distributions may not come from a subdiffusion. This naturally leads to consider the extension of SL price processes to their tempered counterparts. The tempered subdiffusive Lévy models (TSL) are attained as risk-neutral versions of an SL model when an Esscher transformation for the time component is used. Furthermore, risk-neutral specifications of a physical TSL model remain of TSL form. The natural pricing framework where the price of duration risk can be fully accounted for is therefore that of the TSL model class. We explain the role of the stability and tempering parameter in the price evolution process, and illustrate how this model class captures interesting stylized facts. Finally, we derive semi-analytic derivative valuation formulae.
2 Subdiffusive models and incompleteness

In order to discuss subdiffusive models we must first introduce inverse processes and subordinators. For a process L_t, its inverse or first exit time process is:

$$H_t = \inf\{s > 0 : L_s > t\}.$$ \hfill (2.1)

The process H_t is a time-change, that is an increasing, right-continuous, almost surely locally bounded family of stopping times, diverging almost surely as $t \to \infty$. Also, if L_t is almost surely strictly increasing H_t is almost surely continuous. The processes we will look at for the most part are of the form X_{H_t} for some given Lévy process X_t independent of H_t, when L_t is a standard α-stable subordinator. A clear indication of the suitability for this process to model trade duration and price staleness are the “almost everywhere flat” nature of its paths; since L_t jumps infinitely often in any time interval, H_t increases on a set of Lebesgue set measure zero, while remaining constant on its full-measure complement.

Exponential (stochastic or natural) models based on X_{H_t} are termed subdiffusive Lévy (SL) models. When X_t is a Brownian motion, the exponential stemming from X_{H_t} is termed the subdiffusive Black-Scholes model ([11]). When X_t is a compound Poisson process we have an equivalent representation of the model of [3]; if X_t is a stable process we instead have the classic model in [17].

We recall that “market completeness” in finance is attained when at any given time the future price of every financial security can be replicated by using a fundamental set of traded instruments. In the mathematical theory of arbitrage completeness is synonym with the existence of a unique equivalent martingale measures for all the tradable assets. The market is thus incomplete when multiple such measures exist. Adding further traded products to the market may or may not resolve this non-uniqueness. Lack of completeness is generally due to the presence of different exogenous sources of risk external to the price returns generating process, such as abrupt crashes (jump risk) or the presence of stochastic volatility or stochastic interest rates, or even jumps in volatility.

In order to illustrate some misconceptions surrounding the status of completeness of SL models we begin by discussing an incompleteness theorem for the subdiffusive Black-Scholes model, reported first in [11].

Theorem 1. On a filtered space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$, let W_t a Brownian motion, H_t a standard α-stable subordinator independent of W_t and $\mu, \sigma > 0$. Set

$$S_t := \exp(\sigma W_{H_t} - H_t(\mu + \sigma^2/2))$$ \hfill (2.2)

Then

(i) Fix $T > 0$; for all $\epsilon \geq 0$, the process S_t, $0 \leq t \leq T$, is a martingale with respect to the
measure defined by

\[Q_\epsilon(A) = c_\epsilon \int_A \exp \left(-\gamma W_{H_t} - \left(\epsilon + \frac{\gamma^2}{2} \right) H_t \right) d\mathbb{P} \]

for all \(A \in \mathcal{F}_t \), where \(c_\epsilon^{-1} = \mathbb{E} \left[\exp \left(-\gamma W_{H_t} - \left(\epsilon + \frac{\gamma^2}{2} \right) H_t \right) \right] \) and \(\gamma = (\sigma^2/2 + \mu)/\sigma \);

(ii) The risk neutral measure \(\mathbb{Q} \) under which \(S_t \) is a martingale is not unique, and therefore the market consisting of \(S_t \) is incomplete.

The process \(S_t \) is the subdiffusive geometric Brownian motion with expected return rate \(\mu > 0 \) and diffusion coefficient \(\sigma > 0 \). The original Theorem 3 in [11] consists of statement (ii) alone, and uses part (i) in the proof. The claim (i) is recovered from [12], Theorem 1, once one takes \(f(x) = x^\alpha \), an similar claims appear in other sources.

In fact, for \(\epsilon > 0 \) equation (2.3) does not provide a martingale change of measure, aligned with the standard theory of no-arbitrage. Also, there are various issues with its derivation as shown in the Appendix. Here we limit to remark that changes of measures in a filtered probability space modeling an economy must be attained through “state price densities”, that is processes acting as statistical likelihood-ratios between the physical distribution of asset prices and the risk-neutral one. These processes must be themselves (exponential) martingales in the original measure, something which the process under the integral in the right hand side of (2.3) fails to be.

However this does not necessarily mean that also part (ii) of the Theorem is incorrect. We shall see shortly that (ii) is indeed a valid statement, although for a different reason: namely, because a new risk factor has been introduced.

3 The correct argument and the duration market price of risk

The fundamental issue of Theorem 1, (i) is that it does not recognize that \(H_t \) can itself change law when \(S_t \) is subject to an equivalent measure change. In other words, once a risk-neutral distribution for \(S_t \) is fixed, it is possible to alter the distribution of \(H_t \) by subsequent equivalent measure changes without perturbing the martingale property. Therefore the EMM for \(S_t \) cannot be unique: once this fact is accounted for, incompleteness is recovered.

In what follows we denote by \(\mathcal{E}(\cdot) \) the Doğans-Dade (stochastic) exponential of a process. When no filtration is specified, with “martingale” we mean martingale with respect to the own filtration. For a process \(X_t \), \(\kappa^X(z) \) is the Fourier cumulant process of \(X_t \), that is the a. s. unique predictable process such that \(\exp(izX_t)/\mathcal{E}(\kappa^X(z)) \) is a local martingale. If \(Y_t \) is a Lévy process we denote by \(\psi_Y(z) \) its characteristic exponent, i.e. the complex-valued function such that \(e^{\psi_Y(z)} = \mathbb{E}[e^{izY_t}] \).
Theorem 2. Let X_t be a semimartingale, L_t a strictly increasing process independent of X_t and H_t be given by (2.1). Consider the time-changed exponential model $S_t = \exp(X_{H_t})$ and assume an EMM Q^X for the underlying model $S_t^0 = \exp(X_t)$ exists, with associated martingale density \mathcal{X}_t. Assume further that there exists a martingale density \mathcal{H}_t inducing an equivalent change of measure $Q^H \sim P$ with
\[
\frac{dQ^H}{dP} = \mathcal{H}_t
\tag{3.1}
\]
such that L_t remains strictly increasing under Q^H. Then if \mathcal{X}_{H_t} is an \mathcal{F}_{H_t}-martingale, we have that
\[
\mathcal{X}_{H_t}^H = \mathcal{X}_{H_t} H_t
\tag{3.2}
\]
is a martingale such that the measure $Q^{X,H}$ defined by
\[
\frac{dQ^{X,H}}{dP} = \mathcal{X}_{H_t}^H
\tag{3.3}
\]
is equivalent to P on $\mathcal{G}_t = \sigma(\mathcal{F}_{H_t} \cup \mathcal{F}_t)$, and S_t is a martingale with respect to $Q^{X,H}$.

Proof. By independence, after operating the equivalent measure change $Q^H \sim P$ the processes X_t and S_t^0 under Q^H are the same as under P, and hence $\mathcal{X}_t = \frac{dQ^X}{dP} = \frac{dQ^X}{dQ^H}$. Also, H_t remains a continuous Q^H-time change. Now let $Q^{X,H}$ be defined by
\[
\frac{dQ^{X,H}}{dQ^H} = \mathcal{X}_{H_t}
\tag{3.4}
\]
As observed in [18], Lemma 5.1, under mild conditions time and measure change commute, meaning that S_t under $Q^{X,H}$ coincides with the process obtained by applying first the change of measure $Q^X \sim Q^H$ to S_t^0 and then time changing by H_t. Therefore, by [7], Lemma 5, $S_t = S_{H_t}^0 = \exp(X_{H_t})/\mathcal{E}(\kappa^{X,H}(-i))$ under $Q^{X,H}$. That this process is a martingale is easily verified by taking the expectation and conditioning under independence. Finally
\[
\frac{dQ^{X,H}}{dP} = \frac{dQ^{X,H}}{dQ^H} \frac{dQ^H}{dP} = \mathcal{X}_{H_t}^H.
\tag{3.5}
\]

This theorem makes the presence of a market price of duration risk naturally emerge. To the best of this author’s knowledge the concept of duration as random waiting time between trades has been introduced by [5, 6, 4]. The authors show that trade duration is inversely correlated to the price trade impact, which justifies its interpretation as a financial risk factor. Hence, once S_t is calibrated to liquid market prices, the market price of duration risk will be reflected in the parameters of the density \mathcal{H}_t. Every admissible parametrization of this density leads to a theoretically correct risk-neutral price: as a consequence, the market is incomplete. Remarkably, even if it exists only one EMM for X_t, such as in the Brownian or pure Poisson cases, several EMMS for X_{H_t} may exist, confirming the veracity of statement (ii) of Theorem 1. The process
\(\mathcal{H}_t \) is effectively the new state price density incorporating the duration risk born by the model \(X_{t\mathcal{H}_t} \). What is more is that, analogously to the jump risk of Lévy process, duration risk cannot be fully hedged away, not even introducing a new set of traded products. This owes to the fact that the generator of \(L_t \) of \(H_t \) is Lévy process: jumps of \(L_t \) cannot be “announced” beforehand, and their size is random\(^1\). This same features will be thus reflected in the (risk-adjusted) frequency and duration of trade pauses incorporated in \(H_t \).

Theorem 2 can be applied to models of SL form, by the standard Esscher transform technique. If \(S_t = \exp(X_t) \) is a sufficiently regular Lévy model admitting a martingale density\(^2\) \(\mathcal{X}_t \), in Theorem 1 we can take
\[
\mathcal{H}_t = \exp(\theta L_t - t\psi_L(-i\theta)) \tag{3.6}
\]
for all \(\theta \in \mathbb{R} \) such that the right hand side exists. The measure change(s) entailed by \(\mathcal{H}_t \) is called the "Esscher transform" of \(L_t \). It is easily checked that \(\mathcal{H}_t \) is a positive martingale, and thus \(\mathbb{Q}^H \sim \mathbb{P} \). Moreover \(L_t \) satisfies [16], Theorem 33.1, so that \(L_t \) remains a strictly increasing Lévy subordinator under \(\mathbb{Q}^H \) with transformed Lévy measure \(e^{i\theta x} \nu(dx) \), where \(\nu(dx) \) is the positively-supported Lévy measure of \(L_t \) under \(\mathbb{P} \).

4 The case for tempered subdiffusions

For practical purposes, most notably calibration, a desirable property for a financial model is that its structure is maintained after an EMM change, in the sense that after operating a martingale measure change, the resulting risk-neutral distributions remains in the same class of that of the original physical specification. For example an EMM \(\mathbb{Q} \) is a good candidate for a Lévy model, if after a measure change the model is still Lévy and belong to the same class of the original specification, which is often the case for stochastic volatility and Lévy models.

When it comes to pricing the duration risk, the situation the SL setup described is profoundly different. We begin by observing that after an equivalent measure change an \(\alpha \)-stable subordinator cannot remain a stable subordinator. This can be illustrated as follows. Assume that a general process \(X_t \) is Lévy under \(\mathbb{P} \) and \(\mathbb{Q} \). A necessary condition for \(\mathbb{Q} \sim \mathbb{P} \) is that the Lévy measures \(\nu^P(dx) \) and \(\nu^Q(dx) \) are equivalent and the Hellinger distance \(H(\nu^P, \nu^Q) \) between them is finite, (again [16] Theorem 33.1) whose square is defined by:
\[
H(\nu^P, \nu^Q)^2 := \frac{1}{2} \int_{\mathbb{R}} \left(\frac{\nu^Q(dx)}{\nu^P(dx)} - 1 \right)^2 \nu^P(dx) < \infty. \tag{4.1}
\]
Take now \(\mathbb{Q} = \mathbb{Q}^H \) from Theorem 2. For a standard \(\alpha \)-stable Lévy subordinator we have, with \(0 < \alpha < 1 \):
\[
\nu^P(dx) = \frac{\alpha}{\Gamma(1 - \alpha)} x^{-(\alpha+1)} I_{x>0} dx. \tag{4.2}
\]
\(^1\)This suggests that hedging under duration risk should be performed using the mean-variance approach.
\(^2\)Typically itself given by an Esscher transform, if we want to meet the minimum requirement that under the new measure \(Y_t \) is still a Lévy process.
If we let $\nu(Q)(dx)$ be the Lévy density of a standard β-stable subordinator the integrand in (4.1) becomes

$$\left(\sqrt{\frac{\nu(Q)(dx)}{\nu_P(dx)}} - 1\right) \frac{\nu_P(dx)}{dx} = \left(c_\beta \sqrt{x^{\beta+1}} - c_\alpha \sqrt{x^{\alpha+1}}\right)^2 I_{\{x>0\}} \sim \frac{c_{\alpha \vee \beta}}{x^{\alpha \vee \beta+1}}$$

for some $c_\alpha, c_\beta > 0$, and thus the integral (4.1) diverges.

This suggests that α remains a physical parameter and cannot be object of market price calibration. But now observe that by choosing Q^H through a suitable Esscher transform (3.6) with $\theta = -\lambda$, $\lambda > 0$, leads to

$$\nu(Q)(dx) = \frac{\alpha}{\Gamma(1-\alpha)} e^{-\lambda x} x^{\alpha+1} I_{\{x>0\}} dx$$

and this time we have convergence around zero, since for $c_\alpha > 0$:

$$\left(\sqrt{\frac{\nu(Q)(dx)}{\nu_P(dx)}} - 1\right) \frac{\nu_P(dx)}{dx} = c_\alpha \left(\frac{e^{-\lambda x/2} - 1}{x^{\alpha+1}}\right)^2 I_{\{x>0\}} \sim \frac{c_\alpha \lambda}{4} x^{1-\alpha}.$$

Convergence at infinity being clear, this is consistent with the equivalence of Q^H and \mathbb{P} stated in the previous section.

A driftless Lévy subordinator having Lévy measure of the form (4.4) is called a standard tempered stable subordinator (TS), with stability parameter $0 < \alpha < 1$ and tempering parameter $\lambda > 0$, and is a member of the broader class of the tempered stable Lévy processes. The corresponding process H_t is called an inverse tempered stable subordinator. Its analytical properties are fully detailed in [8], [1].

From the foregoing discussion it is also obvious that after applying an Esscher transform to a physical specification of an exponential model $S_t = \exp(X_{H_t})$ where H_t is an inverse tempered stable subordinator with stability α and tempering λ, we obtain a new inverse tempered stable subordinator with tempering parameter $\lambda^* \neq \lambda$ but stability $\alpha^* = \alpha$. In other words, the Esscher transform is structure-preserving for the class of the tempered subdiffusive Lévy models (TSL), although it leaves unaltered the physical stability parameter. The case when X_t is a Brownian motion has been proposed in [10]. Of course, Theorem 2 provides sufficient conditions under which the exponential of a TSL process is a viable no-arbitrage asset pricing model.

5 Aspects of tempered subdiffusive models

Besides preserving the model structure under equivalent measure changes, introducing a tempering parameter λ in a subdiffusive Lévy asset evolution can be directly related to some interesting financial stylized facts.

To start with, we need to briefly digress into the nature of the stable processes. As it is well-known a stable law does not have finite second (or even first) moment. The typical reason for
tempering a stable process is then that of obtaining a new Lévy process with finite moments of all orders, which better adapts to observed natural phenomena. Tempering makes extreme events less likely to occur. For the tempered stable subordinator this can be easily checked: integrating the Lévy measure (4.4) between ϵ and ∞ one gets $\lambda^{-\alpha} \Gamma(-\alpha, \epsilon)$ meaning that the expected number of jumps of length greater than ϵ decreases as λ increases. Also, the scaling properties typical of stable laws extend after tempering, and transfer to the inverse stable subordinator. More precisely, as shown in [1], Proposition 5.1, indicating explicitly by $H_\lambda^\lambda t$ the dependence on λ of the subordinator, we have the equality in distribution:

$$H_\lambda^\lambda t = c^\alpha H_\lambda^\alpha t$$ \hspace{1cm} (5.1)

for all $c > 0$. From the above is also not difficult to show that for $\lambda \to 0$, $H_\lambda^\lambda t$ tends as a stochastic process to the plain inverse stable subordinator $H_0^\alpha t$ of parameter α.

These properties impact the behaviour of the TS subordinator as follows. For any given t, a higher λ entails a lower incidence of large jumps in L_t. But jumps in L_t correspond to intervals in which H_t is constant, so that a large λ implicates a reduced impact of the trapping states in the time evolution. By the same token, in view (5.1), when λ is fixed and the time scale gets shorter, stickiness is reintroduced in the process (see Figure 1). In any case the limiting “high frequency” regime coincides with the purely subdiffusive SL case.

We can thus conclude that the tempered stable subordinators serves to model a time evolution that transitions from a stable behaviour at an early time to a linear clock at a later stage: the speed of this transition is dictated by the tempering parameter λ.

![Figure 1: Time scaling property of TS subordinators, monthly to daily, $\alpha = 0.8$. We set $T = 1/12$ and $\lambda = 10$ in the first panel and changed λ as to solve (5.1) when $c = 1/20$. X_t is a Brownian motion with $\sigma = 0.4$.](image)

As a consequence, asset prices obtained as time changes with respect to the tempered stable subordinator, show at small time scales the typical “flatness” of microstructural models and then transitions to a diffusive behaviour in the long term. The TSL dynamics capture the time multiscale property of equity prices: at some time scales, the observed price pattern is coarse and irregular, whereas it becomes more fluid at a later stage. Crucially, this transition might have different (physical or risk-neutral) velocity for different assets, as regulated by λ. We illustrate
this in Figure 2. For a given \(\alpha \), at daily lag (left panel) there is not much difference between the price evolution pattern of a TSL model with \(\lambda = 1 \) and one with \(\lambda = 20 \): both exhibit the typical granular pattern of intraday charts. However, as times goes by (right panel, 6-months horizon) we see that the model with higher \(\lambda \) reverts to a continuous regime, while the one with low \(\lambda \) still suffers from price staleness effects.

![Figure 2: TSL model sample paths, \(\alpha = 0.7 \): left \(T = 1/250 \), right \(T = 1/2 \). \(X_t \) is a Brownian motion with \(\sigma = 0.4 \).](image)

In the volatility surface analysis, faster or slower reversion to a Lévy model (i.e. higher or lower \(\lambda \)) associates with a slower or faster rate of flattening of the skew with maturity. In Figure 3 we compare the volatility surfaces of a Variance Gamma Lévy model, with an SL and TSL model with parent variance gamma noise \(X_t \) of same parameters. We observe that in the TSL model Lévy the smile flattens with maturity to an asymptotic level, in a way analogous to the benchmark Lévy model, consistently with the TSL returns distribution approaching one of a Lévy process. In contrast, the purely subdiffusive SL case generates a vanishing term structure: here, the implied volatility must tend to zero at large maturity to compensate for the asymptotics of the SL model being slower than Black-Scholes.

In light of these remarks, the TSL duration market price of risk can be further decomposed in two factors: the stability parameter \(\alpha \), that captures the degree of price staleness at microscopic/instantaneous level, and the parameter \(\lambda \) which expresses belief on the speed at which the granular price evolution of the asset will revert to a fully “liquid” state, well approximated by a standard Lévy-driven diffusion. The parameter \(\alpha \) thus captures the **absolute trade duration risk** and the second the **risk of latency to liquidity**. In a tempered model, the latter has a market price, whereas the former remains a statistical parameter. If we think of the basic subdiffusive SL model (\(\lambda = 0 \)) as a regime where prices exhibit maximum staleness at all temporal scales, we could say that \(\lambda \) interpolates between a short term pure SL regime and a long term Lévy regime.

Another major feature of SL and TSL processes is that these processes are **non-Markovian**,
because their transition densities are solutions of fractional equations entailing a global time operator. However, as proved in [15], they possess a Markovian embedding once the state space is augmented as to include the \textit{idle time process} $t - L_{Ht}$, keeping track of the time currently elapsed from the last price innovation. Therefore, at any given instant, the law of the next price revision depends only on the current price and the time went by since such a price was first recorded. This is a realistic feature, as there is no reason to believe that future returns are impacted by price staleness levels observed far back in the trading history.

\section{Pricing formula}

Of particular relevance is also that option pricing in the TSL model can be performed in a semi-analytical way, which allows fast model calibration to vanilla option prices. Given a TSL exponential martingale model, we start from the classic Parseval-Plancharel integral representation of the price V_0 of a regular contingent claim F maturing at T (see [9]):

$$V_0 = \frac{1}{2\pi} \int_{i\gamma - \infty}^{i\gamma + \infty} \mathbb{E}^{Q, H}_{X, H} [e^{-izX_{Ht}}] \hat{F}(z) dz \tag{6.1}$$

where $\hat{\cdot}$ indicates the Fourier transformation, and γ is chosen such that the integration line is in the strip of holomorphy of both functions. In [14], the formula for the Fourier-Laplace transform for an inverse-subordinated Lévy process X_{Ht} is given as:

$$\mathcal{L}(\mathbb{E}^{Q, H}_{X, H}[e^{izX_{Ht}}], s) = \frac{1}{s} \frac{\psi_L(s) \psi_X(-z)}{\psi_L(z) - \psi_X(-z)} \tag{6.2}.$$

In our case we have $\psi_L(s) = (\lambda + s)^\alpha - \lambda^\alpha$ and (6.2) becomes

$$\mathcal{L}(\mathbb{E}^{Q, H}_{X, H}[e^{izX_{Ht}}], s) = \frac{1}{s} \frac{(\lambda + s)^\alpha - \lambda^\alpha}{(\lambda + s)^\alpha - \lambda^\alpha - \psi_X(-z)} \tag{6.3}.$$
Inverting the Laplace transform and substituting in (6.1) yields:

\[
V_0 = \frac{1}{4\pi^2i} \int_{i\gamma-\infty}^{i\gamma+\infty} \left(\int_{i\infty}^{\xi+i\infty} \hat{F}(z) \frac{e^{sT}}{s} \frac{(\lambda + s)^\alpha - \lambda^\alpha}{\lambda^\alpha - \psi_X(-z)} ds \right) dz. \tag{6.4}
\]

To calculate (6.4) one can either use a two-dimensional integration routine (provided \(\xi\) can be chosen independently of \(z\)), or one of the many available Laplace inversion quadrature methods and then integrate in \(dz\).

When \(\lambda = 0\) equation (6.3) reduces to a formula which is well-known to be the Laplace transform of a Mittag-Leffler function. In this case after the Laplace inversion we would have that

\[
E^{Q_{X,H}}[e^{izX_H}] = E_\alpha((T\psi_X(-z))^{\alpha}) \tag{6.5}
\]

where \(E_\alpha\) is the one-parameter Mittag-Leffler function

\[
E_\alpha(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}. \tag{6.6}
\]

The expression above is a generalized exponential with thicker tails, so as \(T\) increases the option prices tend to the spot value slower than in a standard model. This property is precisely what generates the vanishing term structure of the SL model highlighted earlier. Since fast numerical methods are available for \(E_\alpha\), pricing in the SL model is computationally less expensive than in the TSL model. Although elementary, the general integral option pricing formula for SL models following from (6.1)-(6.5) seems not to have appeared before.

Appendix: criticism of part \((i)\) of Theorem 1

We follow the notation in [11]. Define:

\[
Z_t = \exp(\sigma W_t + \mu t); \tag{A.1}
\]

the authors only consider the martingale properties of \(Z_{t|H}\) under \(Q_\epsilon\) for the restricted filtration \(\mathcal{F}_t\), \(0 \leq t \leq T\). At page 563 of [11], they prove the martingale property of the stopped process

\[
Z^{t|H}_t = Z_{t\wedge H_T} \tag{A.2}
\]

with respect to the filtration

\[
\mathcal{H}_t = \bigcap_{u>t} \sigma(W_y : 0 \leq y \leq u) \lor \sigma(H_y : y \geq 0) \tag{A.3}
\]

\(t \geq 0\), under \(Q_\epsilon\). Then they establish the estimates

\[
E^{Q_\epsilon}\left[\sup_{t \geq 0} Z^{t|H}_t\right] = E^P\left[\exp \left(-\gamma W_{H_T} - \left(\epsilon + \frac{\gamma^2}{2} \right) H_T \right) \sup_{t \leq H_T} Z_t\right] < \infty \tag{A.4}
\]
combining in the last line Doob’s Maximal Inequality, Hölder Inequality, and the finiteness of the moment generating function of H_t. From this it is concluded that $Z_{H_t}^{H_T}$ is uniformly integrable and the martingale property would follow after taking the conditional expectation, time changing (which preserves uniform integrability) and observing $Z_{H_t} = Z_{H_t}^{H_T}$ and $\mathcal{F}_t \subset \mathcal{H}_{H_t}$.

In fact, there are several problems with the arguments above. In first place we remark that, although inconsequential, the constant c_ϵ in (2.3) is missing from (A.4). Secondly, (A.4) proves that $Z_{H_t}^{H_T}$ is a bounded family in L^1, and thus an integrable martingale, which is necessary, but not sufficient for uniform integrability. Thirdly, the inequality
\[\sup_{t \leq H_T} e^{W_t} \leq \sup_{t \leq T} e^{W_{H_t}} \]
(A.5)
used between the second and third line of (A.4) is the wrong way around. If we let
\[\mathcal{R} = \{ W_t, 0 < t < H_T \}, \]
(A.6)
and indicate by \mathcal{L} the range of L_t we have that:
\[\mathcal{R}^* := \{ W_{H_t}, 0 < t < T \} = \{ W_t \in \mathcal{R} | t \in \mathcal{L} \} \subsetneq \mathcal{R} \]
(A.7)
where the inclusion is strict since because of the discontinuities of L_t it is $\mathcal{L} \subsetneq [0, H_T]$. Thus the estimate (A.4) is incorrect.

Finally we maintain that the statements $Z_{H_t} = Z_{H_t}^{H_T}$ and $\mathcal{F}_t \subset \mathcal{H}_{H_t}$ are not well-posed, since the the left hand sides are defined on $[0, T]$ whereas the right-hand ones on $t \geq 0$. In the latter case we should have instead $Z_{H_t \vee T} = Z_{H_t}^{H_T}$ when \mathcal{F}_t must be extended in the only possible way so that (2.3) remains an equivalent measure change on the whole filtration, i.e. $\mathcal{F}_t = \mathcal{F}_T, t \geq T$. So we see that the proof does not effectively deal with the subdiffusive Black-Scholes model, but rather, with its stoppage at time T. We also note that no specific properties of the process H_t are used other than having finite moment generating function, so the arguments above could be repeated for general time changes. Indeed, one does not even need to choose the change of measure of the form (2.3): any \mathcal{F}_T-measurable positive normalized random variable X with finite moments up until some order would do. Therefore, if we repeat the proof with $H_t = t$ (and assume that all the issues highlighted are then resolved), and interpret Theorem 1 (i) literally, we would obtain the paradoxical conclusion that the Black-Scholes model is incomplete.

References

