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Abstract

In this paper we study optional projections of G-adapted strict lo-
cal martingales into a smaller filtration F under changes of equivalent
martingale measures. Some general results are provided as well as a
detailed analysis of two specific examples given by the inverse three
dimensional Bessel process and a class of stochastic volatility mod-
els. This analysis contributes to clarify some properties, for example
absence of arbitrage opportunities of market models under restricted
information.

1 Introduction

In this paper we study optional projections of G-adapted strict local martin-
gales into a smaller filtration F under changes of equivalent local martingale
measures.
It is a well known fact that, when projecting a stochastic process into a
filtration with respect to which it is not adapted, some attributes of its dy-
namics may change, see for example Föllmer and Protter [2011] and Bielecki
et al. [2018], where the authors study the semimartingale characteristics of
projections of special semimartingales. Moreover, some basic properties of
the process can be lost. Most notably, the optional projection of a local
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martingale may fail to be a local martingale, see for example [Föllmer and
Protter, 2011, Theorem 3.7] and [Larsson, 2014, Corollary 1], where condi-
tions under which this happen are stated, and Kardaras and Ruf [2019a] for
a study of optional projections of local martingale deflators.
In the literature it is a classical problem to investigate financial market mod-
els under restricted information, where full information on the asset prices
is not available and agent’s decisions are based on a restricted information
flow. This could be due to a delay in the diffusion of information or to an
incomplete data flow, as it may happen for example when investors only see
an asset value when it crosses certain levels, see Jarrow et al. [2007]. In
general this is represented by assuming that trading strategies are adapted
to a filtration which can be smaller than the filtration G generated by the
asset prices.
In Cuchiero et al. [2020] and Kabanov and Stricker [2006] it is shown that
the analysis of characteristics and properties of financial markets under re-
stricted or delayed information boils down to study optional projections of
the asset prices on the smaller filtration. In particular in both papers it is
shown how a certain “no-arbitrage” condition is equivalent to the existence
of an equivalent measure Q such that the Q-optional projection of the asset
price on F is a martingale. This setting can be applied to trading with delay,
trading under restricted information, semistatic hedging and trading under
transaction costs.
A further, relevant application of the study of optional projections is pro-
vided by the works of Cetin et al. [2004], Jarrow et al. [2007] and Sezer
[2007] in the field of credit risk modeling: taking inspiration from Jarrow
and Protter [2004], the authors characterise reduced form models as optional
projections of structural models into a smaller filtration. In particular, the
cash balance of a firm, represented by a process X = (Xt)t≥0, is adapted to
the filtration G of the firm’s management, but not necessarily to the filtra-
tion F representing the information available to the market. In this setting,
the price of a zero-coupon bond issued by the firm is the optional projection
of the value X estimated by the company’s management.
An interesting question to analyse is then if traders with partial information
F ⊂ G may perceive different characteristics of the market they observe with
respect to the individuals with access to the complete information G, for ex-
ample for what concerns the existence of perceived arbitrages. As already
noted in Jarrow and Protter [2013], traders with limited information may
interpret the presence of a bubble on the price process in the larger filtra-
tion as an arbitrage opportunity. This happens if X is a (P,G)-strict local
martingale, oX fails to be a (P,F)-strict local martingale and, in addition,
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there exists no measure Q ∼ P under which oX is a local martingale.
This short literature’s overview shows that it is important to assess the
properties of optional projections under change of equivalent martingale
measures.
In particular we study the relation among the set Mloc of equivalent local
martingale measures (ELMMs) for a process X and the set Mo

loc of measures
Q ∼ P such that the optional projection under Q is a Q-local martingale.
We obtain a chacterization of the relations between Mloc and Mo

loc for two
main cases: the inverse three-dimensional Bessel process and an extension of
the stochastic volatility model of Sin [1998]. We also consider the optional
projection of a G-adapted process into the delayed filtration (Gt−ε)t≥0, ε > 0:
this is a case with interesting consequences for financial applications, as it
represents the scenario where investors in the market have access to the in-
formation with a given positive time delay. Delayed information has been
extensively studied in the literature, see among others Guo et al. [2009],
Hillairet and Jiao [2012], Jeanblanc and Lecam [2008], Xing and Yiyun
[2012] in the setting of credit risk models, Dolinsky and Zouari [2020] un-
der the model uncertainty framework and Bank and Dolinsky [2020] in the
context of option pricing.
Moreover, we provide an invariance theorem about local martingales which
are solutions of a one-dimensional SDE in the natural filtration of an n-
dimensional Brownian motion, see Theorem 3.4. Specifically, we show that
under mild conditions, such a local martingale X has same law under P
as under every Q ∈ Mloc(X). Furthermore, Theorem 3.11 gives a result
about optional projections into a filtration F that is smaller than the natural
filtration FX of X. Here the optional projection is taken with respect to an
ELMM Q such that X has same law under P as under Q. A class of local
martingales X such that all ELMM for X have this characteristic is indeed
provided by Theorem 3.4. Important applications of the setting of Theorem
3.11, i.e., when F ⊆ FX , are given by delayed information and by the model
of Cetin et al. [2004], where the market does not see the value of a firm but
only knows when the firm has positive cash balances or when it has negative
or zero cash balances.
The rest of the paper is organised as follows. In Section 2 we describe our
setting and formulate the aims of our study as five mathematical problems
about optional projections of strict local martingales which we study in the
sequel. In particular we provide a synthetic overview of the main results of
the paper in the light of these problems. In Section 3 we give some gen-
eral results about optional projections of local martingales under equivalent
local martingale measures, that will be used in Sections 4 and 5. More pre-
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cisely, Section 4 is devoted to the inverse three-dimensional Bessel process,
projected into different filtrations, whereas in Section 5 we focus on a class
of two-dimensional stochastic volatility processes. The novelty here is that
we provide such results not only under a reference measure P but more in
general for a set of equivalent local martingale measures. We conclude the
paper with Appendix A, where we characterize the local martingale property
of the optional projection of a local martingale via optimal transport.

2 Mathematical setting

Consider a probability space (Ω,F, P ) equipped with two filtrations F =
(Ft)t≥0, G = (Gt)t≥0, satisfying the usual hypothesis of right-continuity and
completeness, with F ⊂ G. Moreover, let X be a non-negative càdlàg (P,G)-
local martingale. Unless differently specified, we suppose X to be a strict
(P,G)-local martingale. Moreover, we always suppose that F = G∞.
For the rest of the paper, we adopt the following notation.

Notation 2.1. We denote by oX the optional projection of X into F, i.e.,
the unique càdlàg process satisfying

1{τ<∞}
oXτ = E[1{τ<∞}Xτ |Fτ ] a.s.

for every F-stopping time τ . We also define Q,oX to be the optional projec-
tion of X under Q ∼ P into F, i.e., 1{τ<∞}

Q,oXτ = EQ[1{τ<∞}Xτ |Fτ ] a.s.,

for every F-stopping time τ . We call Q,oX the Q-optional projection of X.
If we don’t specify the measure, the optional projection is with respect to
P .
We call FX the natural filtration of X. Moreover, if Q is a probability
measure equivalent to P , we define Z∞ := dQ

dP and denote by FZ, FXZ, GZ,
the càdlàg processes characterised by

FZt = E[Z∞|Ft], FXZt = E[Z∞|FXt ], GZt = E[Z∞|Gt], t ≥ 0 (2.1)

respectively. Moreover, for H = F,FX ,G, we denote

Mloc(X,H) = {Q ∼ P, X is a (Q,H)-local martingale},
MM (X,H) = {Q ∼ P, X is a (Q,H)-true martingale},
ML(X,H) = {Q ∼ P, X is a (Q,H)-strict local martingale}.
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We also set

Mo
loc(X,F) : =

{
Q ∼ P, Q,oX is a (Q,F)-local martingale

}
,

Mloc(X,G,F) : =

{
Q ∼ P, X is a (Q,G)-local martingale, GZ is F-adapted,

dQ

dP
is F∞-measurable

}
,

Mo
loc(X,G,F) : =

{
Q ∼ P, Q,oX is a (Q,F)-local martingale, GZ is F-adapted,

dQ

dP
is F∞-measurable

}
.

Moreover, for a given a (Q,G)-Brownian motion B = (Bt)t≥0 and a suitably
integrable, G-adapted process α = (αt)t≥0, we denote by Et

(∫
αs · dBs

)
the

stochastic exponential at time t of the process (
∫ u

0 αs · dBs)u≥0.

The facts from the following remark are used throughout the paper.

Remark 2.2. All the processes considered in the paper are càdlàg and such
that their optional projections under any considered Q are càdlàg. Càdlàg
processes are indistinguishable if they are modifications of each other. Thus,
given any such càdlàg processes Y 1 and Y 2 and such measures Q1 and Q2,
we have that Q

1,oY 1 = Q2,oY 2 if

EQ
1
[Y 1|Ft] = EQ

2
[Y 2|Ft] for all t.

Remark 2.3. Since we assume F = G∞, the density dQ/dP of any equiv-
alent probability measure Q with respect to the original measure P must be
G∞-measurable. This implies that

Mloc(X,G,G) = Mloc(X,G).

We investigate when the following properties hold:

Mloc(X,G) ∩Mo
loc(X,F) 6= ∅; (P1)

Mloc(
oX,F) 6= ∅; (P2)

ML(X,G) ∩Mo
loc(X,F) 6= ∅; (P3)

Mloc(X,G,F) = Mo
loc(X,G,F); (P4)⋃

Q∈Mloc(X,G)

Mloc(
Q,oX,F) 6= ∅. (P5)

Note that ML(X,G),Mloc(X,G) 6= ∅, as P ∈ ML(X,G) by hypothesis.
Properties (P1), (P2), (P3) and (P5) trivially hold if oX is an F-local mar-
tingale, so the more interesting case is when oX is not a local martingale.
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Under this hypothesis, properties (P1)-(P5) can hold or not depending on
both the process X and the filtration F, as illustrated in Sections 4 and 5.
In particular, the properties are related as we discuss in the sequel.
Note that if one of (P3) or (P4) holds, then (P1) holds as well. Moreover,
(P5) is the weakest one: anyone of (P1), (P2), (P3) or (P4) implies (P5).
This can be summarized in the following scheme:

P3 P4

P1

P5

P2

Note that problems (P2) and (P5) are related to the perception of arbitrages
under the smaller filtration F. In particular, when property (P5) holds, this
means that there exist at least one equivalent probability measure Q that
defines an arbitrage-free market under restricted information.
We finish the section by summarizing our main results. Note that properties
(P1), (P2), (P3) and (P5) trivially hold for the three-dimensional Bessel
process projected into the filtration generated by (B1, B2), as the optional
projection is again a strict local martingale, see Section 4.1.

• Property (P1): in Section 5 we introduce a stochastic volatility pro-
cess X, which is a strict local martingale under suitable conditions
on the coefficients of its SDE, but whose optional projection into a
specific sub-filtration is not a local martingale, see Theorem 5.10.
Property (P1) holds because X admits a true martingale measure,
see Proposition 5.2. On the contrary, (P1) is not true for the inverse
three-dimensional Bessel process projected into a delayed filtration,
i.e., F = (Ft)t≥0, Ft = Gt−ε, ε > 0, see Section 4.2..

• Property (P2): a particular case of the stochastic volatility model
introduced in Section 5 gives a strict local martingale N such that oN
is not a local martingale but Mloc(

oN,F) 6= ∅, see Example 5.7. In
this setting (P2) holds. For the optional projection into the delayed
filtration of the process introduced in Example 4.7, (P2) holds true
as well. On the other hand, the property does not hold in the case of
the inverse three-dimensional Bessel process projected into the delayed
filtration,, see Theorem 4.5.

• Property (P3): in Example 5.8 we consider the sum of the stochastic
volatility process of Section 5 and a suitable strict local martingale
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adapted to a Brownian filtration F: this is a strict local martingale
whose optional projection into F is not a local martingale, but such
that (P3) is satisfied. On the contrary, this property is not true for
the inverse three-dimensional Bessel process projected into the delayed
filtration, see Section 4.2.

• Property (P4): it is satisfied for the inverse three-dimensional Bessel
process projected into the filtration generated by (B1, B2), see Theo-
rem 4.2. The property does not hold for any of the examples where
(P1) does not hold, e.g., in the case of the inverse three-dimensional
Bessel process projected into a delayed filtration.

• Property (P5): it holds for all the examples considered except for
the inverse three-dimensional Bessel process projected into the delayed
filtration, see Theorem 4.5.

3 General results

We start by providing some preliminary results which will be used through-
out the rest of the paper. They are also of independent interest.

Lemma 3.1. Let X = (Xt)t≥0 be a non-negative G-local martingale adapted
to the filtration F ⊆ G. Then

Mloc(X,G) ⊆Mloc(X,F).

Proof. Consider the sequence of stopping times (τn)n∈N defined by

τn := inf{t ≥ 0 : Xt > n} ∧ n, n ≥ 1.

Note that (τn)n∈N is a sequence of F-stopping times since X is F-adapted.
We have

sup
0≤t≤τn

|Xt| ≤ n+ |Xτn |

for every n ∈ N. Let now Q ∈ Mloc(X,G). Then |Xτn | ∈ L1(Q), since X
is a (Q,G)-local martingale bounded from below and thus a (Q,G)-super-
martingale. Then X is localized by (τn)n∈N, and therefore Q ∈ Mloc(X,F).

Lemma 3.2. Let Q be a probability measure equivalent to P , such that GZ
in (2.1) is F-adapted. Then Q,oX = oX.
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Proof. Recall that FZt := E[dQ/dP |Ft]. Since GZ is F-adapted, we have

GZt = E[GZt|Ft] = E[E[dQ/dP |Gt]|Ft] = E[dQ/dP |Ft] = FZt, t ≥ 0 (3.1)

and thus

Q,oXt = EQ[Xt|Ft] = (FZt)
−1E[GZtXt|Ft] = E[Xt|Ft] = oXt, t ≥ 0.

We now give some general results about optional projections under changes
of equivalent measures. Some of the examples in Sections 4 and 5 are based
on these findings.
The following theorem provides a condition under which the Q-optional
projection of X is an F-local martingale under any ELMM Q.

Theorem 3.3. Assume that X admits an F-localizing sequence which makes
it a bounded (P,G)-martingale. Then Q,oX is a (Q,F)-local martingale for
every Q ∈Mloc(X,G).

Proof. Let Q ∈Mloc(X,G), and (τn)n∈N be the assumed localizing sequence.
Since Xτn is bounded for every n ∈ N, (τn)n∈N localizes X under Q as well,
and the result follows by Theorem 3.7 in Föllmer and Protter [2011].

We now give a theorem which provides a class of local martingales whose
law under P is invariant under change of any equivalent local martingale
measure. This result is of independent interest and also useful in our context,
see Theorem 3.11.

Theorem 3.4. Let G be the natural filtration of an n-dimensional Brownian
motion B = (Bt)t≥0, n ∈ N. Moreover, let X = (Xt)t≥0 be a (P,G)-local
martingale, given by

dXt = σ(t,Xt)dWt, t ≥ 0, (3.2)

where W is a one-dimensional (P,G)-Brownian motion, and the function
σ(·, ·) is such that there exists a unique strong solution to (3.2). Suppose
also that σ(t,Xt) 6= 0 a.s. for almost every t ≥ 0.
Then X has the same law under P as under any Q ∈ Mloc(X,G). In
particular, if X is a (P,G)-strict local martingale, it is a (Q,G)-strict local
martingale under any Q ∈Mloc(X,G), and if it is a (P,G)-true martingale,
it is a (Q,G)-true martingale under any Q ∈Mloc(X,G).
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Proof. The Martingale representation Theorem applied to the filtration G
implies that there exists a unique Rn-valued process σW = (σWt )t≥0, pro-
gressive and such that

∫ t
0 (σWs )2ds <∞ a.s. for all t ≥ 0, such that

Wt =

∫ t

0
σWs · dBs, a.s., t ≥ 0. (3.3)

Consider a probability measure Q ∈Mloc(X,G), defined by a density

dQ

dP
|Gt = Et

(∫
αs · dBs

)
, t ≥ 0, (3.4)

where α = (αt)t≥0 is a suitably integrable, G-adapted processes. Girsanov’s
Theorem implies that the dynamics of W under Q are given by

Wt =

∫ t

0
σWs · dB̃s +

∫ t

0
(σWs · αs)ds, t ≥ 0, (3.5)

where the process B̃ = (B̃t)t≥0 defined by

B̃t = Bt −
∫ t

0
αsds, t ≥ 0 (3.6)

is a (Q,G)-Brownian motion. But since Q ∈ Mloc(X,G) and σ(t,Xt) 6= 0
a.s. for almost every t ≥ 0, we obtain by (3.2) that

σWt · αt = 0 P ⊗ dt− almost surely, t ≥ 0,

and W is a (Q,G)-local martingale.
SinceW is a (P,G)-Brownian motion, Lévy’s Characterization Lemma of the
one-dimensional Brownian motion implies that W is also a (Q,G)-Brownian
motion, and the result follows.

The next results regard the case when there are no ELMMs defined by a
non trivial density adapted to FX .

Proposition 3.5. Let X be a non-negative (P,G)-local martingale, and
suppose that

Mloc(X,FX ,FX) = {P}.

Let Q be a probability measure with Q ∈Mloc(X,G), and GZ be the density
process defined in (2.1). Then

E[GZt|FXt ] = 1, a.s., t ≥ 0.
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Proof. If Q ∈ Mloc(X,G), the X is a (Q,FX)-local martingale by Lemma

3.1. This implies that X · FXZ is a (P,FX)-local martingale, where FXZ is
defined in (2.1). By the assumption Mloc(X,FX ,FX) = {P},

1 = E[Z∞|FXt ] = E
[
E[Z∞|Gt]|FXt

]
= E[GZt|FXt ], a.s., t ≥ 0.

Corollary 3.6. Let X be a non-negative (P,G)-local martingale, and sup-
pose that

Mloc(X,FX ,FX) = {P}.

If X is a (P,G)-strict local martingale, then it is a (Q,G)-strict local mar-
tingale under any Q ∈ Mloc(X,G), and if it is a (P,G)-true martingale, it
is a (Q,G)-true martingale under any Q ∈Mloc(X,G).

Proof. Suppose that X is a (P,G)-strict local martingale. Then there exists
t ≥ 0 such that EP [Xt] < X0. For the same t, we have

EQ[Xt] = EP [Z∞Xt] = EP [GZtXt] = EP
[
XtEP [GZt|FXt ]

]
= EP [Xt] < X0

a.s., where the last equality follows from Proposition 3.5. Therefore, X is
a (Q,G)-strict local martingale. Analogously, it can be seen that if X is a
(P,G)-true martingale, it is a (Q,G)-true martingale.

Corollary 3.7. Let X be a non-negative (P,G)-local martingale, and sup-
pose that

Mloc(X,FX ,FX) = {P}.

Then for every probability measure Q ∈Mloc(X,G), and every sub-filtration
F ⊆ FX , we have oX = Q,oX.

Proof. Let Q ∈Mloc(X,G). Then

EQ[Xt|Ft] =
(
EP [Z∞|Ft]

)−1 EP [GZtXt|Ft]

=
(
EP
[
EP [Z∞|FXt ]|Ft

])−1 EP
[
EP [GZtXt|FXt ]|Ft

]
= EP

[
XtEP [GZt|FXt ]|Ft

]
= EP [Xt|Ft] , a.s., t ≥ 0,

where the second equality follows from F ⊆ FX and the last from Proposition
3.5.
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The rest of the section is concerned with the equivalent measure extension
problem of Larsson [2014], together with the most important results relating
this problem to the optional projection of strict local martingales.
In the setting introduced in Section 2, define first the stopping times

τn := inf{t ≥ 0 : Xt ≥ n} ∧ n, τ := lim
n→∞

τn,

and note that Gτ− = ∨n≥1Gτn .
The Föllmer measure Q0 is defined on Gτ− as the probability measure that
coincides with Qn on Gτn for each n ≥ 1, where Qn ∼ P is defined on Gτn
by dQn = XτndP . For more details see [Larsson, 2014, Section 2].
The measure Q0 is then only defined on Gτ−. It is then a natural question
whether Q0 can be extended to G∞, i.e., whether it is possible to find a
measure Q̃ on (Ω,G∞) such that Q̃ = Q0 on Gτ−. There are several ways
in which Q0 can be extended to a measure Q̃ on G∞, see Larsson [2014].
A further problem is whether Q0 admits an extension to G∞ as specified
below.

Problem 3.8 (Equivalent measure extension problem, Problem 1 of Larsson
[2014]). Consider the probability space (Ω,F, P ) equipped with two filtra-
tions F = (Ft)t≥0, G = (Gt)t≥0 with Ft ⊆ Gt for all t ≥ 0, and let X be
a (P,G)-local martingale. Given the probability measure Q0 introduced
above, find a probability measure Q on (Ω,G∞) such that:

1. Q = Q0 on Gτ−;

2. The restrictions of P and Q to Ft are equivalent for each t ≥ 0.

The existence of a solution to the equivalent measure extension problem is
connected with the behaviour of the optional projection of X into F by the
following theorem.

Theorem 3.9 (Corollary 1 of Larsson [2014]). Let X be a strict G-local
martingale. If oX is an F-local martingale, then the equivalent measure
extension problem has no solution.

We now provide a result about optional projections under equivalent local
martingale measures into a filtration F ⊆ FX . We start with a lemma.

Lemma 3.10. Let X be a non-negative G-local martingale. Suppose that
the equivalent measure extension problem admits a solution for P and the
two filtrations F ⊆ G, with F ⊆ FX . Then it also admits a solution for P ,
F and FX .
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Proof. Note first that X is an FX -local martingale by Lemma 3.1. Let Q
be a solution of the equivalent measure extension problem for P , F and G.
Also let Q0 and QX0 be the Föllmer measures on Gτ− and FXτ−, respectively.
By construction, we have that QX0 coincides with Q0 on FXτ−. This implies
that Q is also an extension of QX0 , equivalent to P on Ft for every t ≥ 0.
Then Q gives a solution for the equivalent measure extension problem for
P , F and FX .

Theorem 3.11. Consider a probability measure P̃ ∈ML(X,G) and suppose
that X has the same law under P as under P̃ . Also assume that the equiv-
alent measure extension problem admits a solution for P , and that F ⊆ FX .

Then the P̃ -optional projection P̃ ,oX of X into F is not a (P̃ ,F)-local mar-
tingale.

Proof. By Lemma 3.10, we have that the equivalent measure extension prob-
lem admits a solution for P , F and FX . Consider now the construction of
the Föllmer measure illustrated above. The stopping times

τn := inf{t ≥ 0 : Xt ≥ n} ∧ n, τ := lim
n→∞

τn

have the same law under P as under P̃ . Moreover, as by assumption X
has the same law under P as under P̃ and since dQn = XτndP and dQ̃n =
XτndP̃ , the measures Qn and Q̃n coincide on FXτn , so the equivalent measure

extension problem also admits a solution for P̃ , F and FX . By Theorem 3.9,
it follows that the P̃ -optional projection of X into F is not a (P̃ ,F)-local
martingale.

Note that Theorem 3.4 implies that Theorem 3.11 can be applied to all
processes with dynamics as in (3.2). An important application when F ⊆ FX
is the study of delayed information.

4 The inverse three-dimensional Bessel process

In this section we study problems (P1)-(P5) in the case of the inverse three-
dimensional Bessel process. Let B1 = (B1

t )t≥0, B
2 = (B2

t )t≥0, B
3 = (B3

t )t≥0

be standard, independent Brownian motions, starting at (B1
0 , B

2
0 , B

3
0) =

(1, 0, 0), on (Ω,F, P ). We specify the filtration later. In the notation of
Section 2, we now assume that the non-negative local martingale X is given
by the inverse three-dimensional Bessel process

Xt :=
(
(B1

t )2 + (B2
t )2 + (B3

t )2
)−1/2

, t ≥ 0. (4.1)
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Itô’s formula implies that under the original probability measure P , X has
dynamics

dXt = −X3
t

(
B1
t dB

1
t +B2

t dB
2
t +B3

t dB
3
t

)
, t ≥ 0, (4.2)

with (B1
0 , B

2
0 , B

3
0) = (1, 0, 0). We note that X also solves the SDE

dXt = −X2
t dWt, t ≥ 0, (4.3)

where the process W with

Wt =

∫ t

0
Xs

(
B1
sdB

1
s +B2

sdB
2
s +B3

sdB
3
s

)
, t ≥ 0 (4.4)

is a one-dimensional Brownian motion as it is a continuous local martingale
with [W,W ]t = t.
In the notation of Section 2 we now consider two different choices for the fil-
tration G: in Section 4.1 we let G be the filtration generated by (B1, B2, B3),
whereas in Section 4.2 it is generated by the Brownian motion W in (4.4).
In both cases, X is a strict G-local martingale, and it is therefore interesting
to investigate properties (P1)-(P5) when X is projected into a smaller fil-
tration F. It is well known that the projection of X is not a local martingale
when projected into the natural filtration of B1, see also Kardaras and Ruf
[2019b] for a more general study of the projection of functions of the sum
of two independent Bessel processes of dimension n ≥ 2 and m − n, with
0 ≤ m < n. In our work, we consider the case when F is generated by
B1 and B2 in Section 4.1. On the other hand, in Section 4.2 we study an
example of delayed information, which describes in fact a situation which
often happens in practice: here F = (Ft), with Ft = Gt−ε, ε > 0, meaning
that investors have access to the information of the process with a strictly
positive time delay ε.

Remark 4.1. In order to study property (P1), it is of course important to
have some knowledge about the set Mloc(X,G). In particular, one can ask
whether the market is complete, i.e., Mloc(X,G) = {P}, or incomplete, that
means that there exists infinitely many measures Q ∈Mloc(X,G).
In the case of the inverse three-dimensional Bessel process, this depends on
the choice of G: if G is generated by one Brownian motion, as it happens
in Section 4.2, it is well known that the market is complete, so that the
probability P is the only measure under which X is a local martingale, see
also Delbaen and Schachermayer [1994].
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On the other hand, let now G be the natural filtration of (B1, B2, B3), as it
is the case in Section 4.1. In this case, we have Mloc(X,G) 6= {P}. Namely,
consider for example the G-adapted processes

α1
t = − B2

t

(B1
t )2 + (B2

t )2 + 1
, α2

t =
B1
t

(B1
t )2 + (B2

t )2 + 1
, t ≥ 0 (4.5)

and Z = (Zt)t≥0 defined by

Zt = Et (L) , t ≥ 0, (4.6)

with

Lt :=

∫ t

0
e−δsα1

sdB
1
s +

∫ t

0
e−δsα2

sdB
2
s , t ≥ 0,

for a given δ > 0. With this choice of αi, i = 1, 2, the stochastic exponential
Z in (4.6) is a G-adapted process such that [X,Z] = 0 a.s.. Moreover, the
Novikov’s condition for Z is fulfilled since

exp

(
1

2
[Z,Z]∞

)
= exp

(
1

2

∫ ∞
0

e−2δs‖αs‖2ds
)
≤ exp

(
1

4δ

)
,

and Z is then a uniformly integrable martingale. For this reason, defining
Q by

dQ

dP
|Gt = Zt, t ≥ 0,

we have that Q ∈Mloc(X,G), Q 6= P .
However, Theorem 3.4 implies that MM (X,H) = ∅ for every filtration H to
which X is adapted, i.e., there does not exist any measure Q ∼ P such that
X is a true martingale under Q. This also means that, for the examples of
Sections 4.1 and 4.2, property (P1) holds if and only if (P3) holds.

4.1 Optional projection into the filtration generated by (B1, B2)

In this section, we provide an example for which property (P4) is satisfied,
i.e., we introduce two filtrations F ⊆ G such that for the inverse Bessel
process X we have

Mloc(X,G,F) = Mo
loc(X,G,F).

In particular, we let G be the natural filtration of (B1, B2, B3), and F be
generated by (B1, B2). As usual, we denote the optional projection of the
inverse three-dimensional Bessel process X into F by oX. Theorem 5.2 of

14
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Föllmer and Protter [2011] states that oX is an F-local martingale and has
the form

oXt = u(B1
t , B

2
t , t), t ≥ 0

with

u(x, y, t) =
1√
2πt

exp

(
x2 + y2

4t

)
K0

(
x2 + y2

4t

)
,

where we denote by Kn, n ≥ 0, the modified Bessel functions of the second
kind. In particular, it holds

∂xu(x, y, t) = xψ(x, y, t), ∂yu(x, y, t) = yψ(x, y, t), (4.7)

where

ψ(x, y, t) =
1√
2πt

exp

(
x2 + y2

4t

)(
K0

(
x2 + y2

4t

)
−K1

(
x2 + y2

4t

))
.

(4.8)
Since oX is an F-local martingale, we focus here on property (P4).
The following theorem provides a positive answer to property (P4) in this
example.

Theorem 4.2. Let F be the natural filtration of (B1, B2). Then

Mloc(X,G,F) = Mo
loc(X,G,F).

Proof. We first prove that Mloc(X,G,F) ⊆Mo
loc(X,G,F).

Introduce the sequence of stopping times (τn)n∈N with

τn = inf

{
(B1

t )2 + (B2
t )2 ≤ 1

n

}
, n ≥ 1.

We have limn→∞ τn = ∞ because the origin (0, 0) is polar for a two-
dimensional Brownian motion, so this is a localizing sequence of F-stopping
times that makesX a bounded martingale. Consider nowQ ∈Mloc(X,G,F).
Theorem 3.3 implies that Q,oX is a (Q,F)-local martingale, i.e., Q ∈Mo

loc(X,G,F).
We now prove that Mo

loc(X,G,F) ⊆Mloc(X,G,F). Take Q ∈Mo
loc(X,G,F),

i.e., suppose that Q,oX is a (Q,F)-local martingale.
Since oX is a (P,F)-local martingale and Q,oX = oX by Lemma 3.2, from
Q ∈ Mo

loc(X,G,F) it follows that [GZ, oX] is a local martingale, because
GZ = FZ as seen in (3.1).
Note now that since the density of Q with respect to P is F-adapted, it holds

GZt =
dQ

dP
|Gt = Et

(∫
α1
sdB

1
s +

∫
α2
sdB

2
s

)
, t ≥ 0, (4.9)
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where α1 and α2 are F-adapted processes such that the Doléans exponential
in (4.9) is well defined and a uniformly integrable martingale.
By (4.7), (4.8) and (4.9), we have

[GZ, oX]t =

∫ t

0

GZsψ(B1
s , B

2
s , s)(α

1
sB

1
s + α2

sB
2
s )ds, t ≥ 0. (4.10)

Since ψ(x, y, t) < 0 for x, y < ∞ and t > 0 (see for example Yang and
Chu [2017]), equation (4.10) together with the fact that [GZ, oX] is a local
martingale imply that

α1
tB

1
t + α2

tB
2
t = 0 P -a.s., t ≥ 0 (4.11)

as P is equivalent to Q. Moreover, from (4.2) and (4.9) it follows that

[GZ,X]t = −
∫ t

0

GZsX
3
s (α1

sB
1
s + α2

sB
2
s )ds, t ≥ 0

and this is zero P -a.s. by (4.11). Since X is (P,G)-local martingale, this
implies that X is also a (Q,G)-local martingale. Hence Q ∈Mloc(X,G,F).

4.2 Delayed information

We now consider a market model with delayed information: here G is the
filtration generated by the Brownian motion W in (4.4), whereas F = (Ft)t≥0

is given by Ft = Gt−ε, ε > 0. As explained above, this means that investors
have access to the information about W , with respect to which X is adapted
by (4.3), only with a positive delay ε.
In this setting, we show that none of the properties properties (P1)-(P5) is
satisfied for X. However, in Example 4.7 we introduce a modification M of
the inverse Bessel process X such that Mloc(

oM,F) 6= ∅, so that properties
(P2) and (P5) are satisfied. Still, (P1), (P3) and (P4) are not fulfilled in
this case either.
We start our analysis with the following

Lemma 4.3. For every ε > 0, we have

E[Xt+ε|σ(B1
t , B

2
t , B

3
t )] = Xterf

(
1

Xt

√
2ε

)
,

where erf(x) := 2√
π

∫ x
0 e
−t2dt.
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Proof. We have

E[Xt+ε|σ(B1
t , B

2
t , B

3
t )] = u(ε, B1

t , B
2
t , B

3
t ),

with

u(t, a, b, c) = (2πt)−3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−
1
2t((x−a)2+(y−b)2+(z−c)2)√

x2 + y2 + z2
dzdydx =: I.

We set R =
√
a2 + b2 + c2, r =

√
x2 + y2 + z2. The above integral can be

written in spherical coordinates as

I = (2πt)−3/2

∫ 2π

0

∫ ∞
0

r2 1

r

∫ π

0
sin(θ)e−

1
2t

(r2−2rR cos(θ)+R2)dθdrdφ

=
2

R
√
π

∫ R√
2t

0
e−r

2
dr =

1√
a2 + b2 + c2

erf

(√
a2 + b2 + c2

2t

)
.

Thus

E[Xt+ε|σ(B1
t , B

2
t , B

3
t )] =

1√
(B1

t )2 + (B2
t )2 + (B3

t )2
erf

(√
(B1

t )2 + (B2
t )2 + (B3

t )2

2ε

)

= Xterf

(
1

Xt

√
2ε

)
.

Proposition 4.4. Let G = (Gt)t≥0 be the filtration generated by the Brow-
nian motion W in (4.4), and F = (Ft)t≥0 be given by Ft := Gt−ε, t ≥ 0,
ε > 0. Then

oXt+ε = E[Xt+ε|Ft+ε] = Xterf

(
1

Xt

√
2ε

)
, t ≥ 0.

Proof. Due to the Markov property of W and since σ(Wt) ⊂ σ(B1
t , B

2
t , B

3
t )

by (4.3) and (4.4), from Lemma 4.3 it follows

E[Xt+ε|Ft+ε] = E[Xt+ε|σ(Wt)] = E
[
E
[
Xt+ε|σ(B1

t , B
2
t , B

3
t )
]
|σ(Wt)

]
= E

[
Xterf

(
1

Xt

√
2ε

) ∣∣∣∣σ(Wt)

]
= Xterf

(
1

Xt

√
2ε

)
, t ≥ 0

as Xt is σ(Wt)-measurable.
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By Proposition 4.4, we have

oXt+ε = f(Xt), t ≥ 0,

where f(x) = x · erf
(

1
x
√

2ε

)
. Since

f ′(x) = −
√

2e−
1

2εx2

x
√
πε

+ erf

(
1

x
√

2ε

)
, f ′′(x) = −

√
2ε−

3
2 e−

1
2εx2

x4
√
π

,

Itô’s formula gives

d oXt+ε =

−√2e
− 1

2εX2
t

Xt
√
πε

+ erf

(
1

Xt

√
2ε

) dXt −
√

2ε−
3
2 e
− 1

2εX2
t

X4
t

√
π

d[X,X]t

=

√2e
− 1

2εX2
t

√
πε

Xt − erf

(
1

Xt

√
2ε

)
X2
t

 dWt −
√

2

π
ε−

3
2 e
− 1

2εX2
t dt. (4.12)

By the above expression, we note that the optional projection is a strict F-
supermartingale, as the drift is strictly negative. Since by Remark 4.1 we
have Mloc(X,G) = {P}, this implies that

Mloc(X,G) ∩Mo
loc(X,F) = ∅, (4.13)

i.e., properties (P1), (P3) and (P4) do not hold.
Moreover, we give the following theorem, which implies that properties (P2)
and (P5) are not satisfied.

Theorem 4.5. Let G = (Gt)t≥0 be the filtration generated by the Brownian
motion W in (4.4) and F = (Ft)t≥0, with Ft := Gt−ε, t ≥ 0, ε > 0. Then

Mloc(
oX,F) = ∅.

To prove Theorem 4.5, we rely on some results provided by Mijatovic and
Urusov [2012], which we now recall. Consider the state space J = (l, r),
−∞ ≤ l < r ≤ ∞ and a J-valued diffusion Y = (Yt)t≥0 on some filtered
probability space, governed by the SDE

dYt = µY (Yt)dt+ σY (Yt)dBt, t ≥ 0, (4.14)

where Y0 = y0 ∈ J and B is a one-dimensional Brownian motion. Moreover,
µY (·), σY (·) are deterministic functions, that from now on we simply denote
by µY and σY , such that

σY (x) 6= 0 ∀x ∈ J (4.15)
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and
1

σ2
Y

,
µY
σ2
Y

∈ L1
loc(J). (4.16)

Here L1
loc(J) denotes the class of locally integrable functions ψ on J , i.e.,

the measurable functions ψ : (J,B(J))→ (R,B(R)) that are Lebesgue inte-
grable on compact subsets of J .
Consider the stochastic exponential

Et

(∫
g(Yu)dBu

)
, t ≥ 0 (4.17)

with g(·) such that
g2

σ2
Y

∈ L1
loc(J). (4.18)

Put J̄ = [l, r] and, fixing an arbitrary c ∈ J , define

ρ(x) := exp

{
−
∫ x

c

2µY
σ2
Y

(y)dy

}
, x ∈ J, (4.19)

ρ̃(x) := ρ(x) exp

{
−
∫ x

c

2g

σY
(y)dy

}
, x ∈ J, (4.20)

s(x) :=

∫ x

c
ρ(y)dy, x ∈ J̄ , (4.21)

s̃(x) :=

∫ x

c
ρ̃(y)dy, x ∈ J̄ . (4.22)

Denote ρ = ρ(·), s = s(·), s(r) = limx→r− s(x), s(l) = limx→l+ s(x), and
analogously for s̃(·) and ρ̃(·).
Define

L1
loc(r−) :=

{
ψ : (J,B(J))→ (R,B(R))

∣∣∣ ∫ r

x
|ψ(y)|dy <∞ for some x ∈ J

}
,

and L1
loc(l+) analogously. We report here Theorem 2.1 in Mijatovic and

Urusov [2012].

Theorem 4.6. Let the functions µY , σY , and g satisfy conditions (4.15),
(4.16) and (4.18), and let Y be a solution of the SDE (4.14).
Then the Doléans exponential given by (4.17) is a true martingale if and
only if both of the following requirements are satisfied:
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1. It does not hold

s̃(r) <∞ and
s̃(r)− s̃
ρ̃σ2

Y

∈ L1
loc(r−), (4.23)

or it holds

s(r) <∞ and
(s(r)− s)g2

ρσ2
Y

∈ L1
loc(r−). (4.24)

2. It does not hold

s̃(l) > −∞ and
s̃− s̃(l)
ρ̃σ2

Y

∈ L1
loc(l+),

or it holds

s(l) > −∞ and
(s− s(l))g2

ρσ2
Y

∈ L1
loc(l+).

We now use Theorem 4.6 in order to prove Theorem 4.5.

Proof of Theorem 4.5. By (4.12) we have

d oXt+ε = µ(Xt)dt+ σ(Xt)dWt, t ≥ 0

with

µ(x) = −
√

2

π
ε−

3
2 e−

1
2εx2 , σ(x) = x

√
2

πε
e−

1
2εx2 −x2erf

(
1

x
√

2ε

)
. (4.25)

By Girsanov’s Theorem there exists a probability measure Q ∈Mloc(
oX,F)

only if the Doléans exponential

dQ

dP
|Gt = Zt = Et

(∫
αsdWs

)
, t ≥ 0 (4.26)

with

αt = −µ(Xt)

σ(Xt)
, t ≥ 0 (4.27)

is a true martingale.
In order to prove that this is not the case, we apply Theorem 4.6. In our
case, by equations (4.3), (4.25) and (4.27), we have Y = X, J = (0,∞),
µY ≡ 0, σY (x) = −x2 and

g(x) =

√
2/πε−

3
2 e−

1
2εx2

x
(√

2
πεe
− 1

2εx2 − x · erf
(

1
x
√

2ε

)) .
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Note that conditions (4.15) and (4.16) are satisfied. In order to prove that
(4.18) also holds, it is enough to check that

x · erf

(
1

x
√

2ε

)
−
√

2

πε
e−

1
2εx2 > 0 for every x ∈ (0,∞).

This holds if and only if

erf(y)
1

y
√

2ε
−
√

2

πε
e−y

2
> 0 for every y ∈ (0,∞),

i.e., if and only if

F (y) := erf(y)− 2√
π
ye−y

2
> 0 for every y ∈ (0,∞).

The last condition if fulfilled since F (0) = 0 and F ′(y) = 4√
π
y2e−y

2
> 0 for

every y > 0, then we have

x · erf

(
1

x
√

2ε

)
−
√

2

πε
e−

1
2εx2 > 0 for every x ∈ (0,∞) (4.28)

and the assumptions of Theorem 4.6 are thus satisfied.
We now show that condition (4.24) fails whereas (4.23) is satisfied, implying
that the density Z introduced in (4.26) is not a martingale.
Consider first ρ and s defined in (4.19) and (4.21), respectively. We have
ρ ≡ 1, so that s(x) = x − c, for any c > 0. This implies that s(∞) = +∞,
so that condition (4.24) fails.
We now check condition (4.23). We have

lim
x→∞

e−
1

2εx2

x2
(√

2
πεe
− 1

2εx2 − x · erf
(

1
x
√

2ε

)) = −3

√
π

2
ε3/2,

so

lim
x→∞

−x 2g(x)

σY (x)
= lim

x→∞
2
√

2/πε−
3
2

e−
1

2εx2

x2
(√

2
πεe
− 1

2εx2 − x · erf
(

1
x
√

2ε

)) = −6.

Hence we have that, for every δ > 0, there exists x̄ > 0 such that∣∣− x 2g(x)

σY (x)
+ 6
∣∣ ≤ δ for every x ≥ x̄. (4.29)
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We fix δ < 1 and choose x̄ > 0 such that (4.29) holds. For every x > x̄ we
get the estimate∣∣∣∣− ∫ x

x̄

2g(y)

σY (y)
dy +

∫ x

x̄

6

y
dy

∣∣∣∣ ≤ ∫ x

x̄

∣∣∣∣− 2g(y)

σY (y)
+

6

y

∣∣∣∣dy ≤ ∫ x

x̄

1

y

∣∣∣∣− y 2g(y)

σY (y)
+ 6

∣∣∣∣dy
≤ δ (log(x)− log(x̄)) .

Thus, for every x > x̄, we have

(−6− δ) (log(x)− log(x̄)) ≤ −
∫ x

x̄

2g(y)

σY (y)
dy ≤ (−6 + δ) (log(x)− log(x̄)) .

This implies that, taking ρ̃ as in (4.20) and choosing c = x̄, for every x > x̄,(x
x̄

)−6−δ
≤ ρ̃(x) ≤

(x
x̄

)−6+δ
. (4.30)

Hence, taking s̃ as in (4.22) and choosing again c = x̄, for every x > x̄ we
have ∫ x

x̄

(y
x̄

)−6−δ
dy ≤ s̃(x) =

∫ x

x̄
ρ̃(y)dy ≤

∫ x

x̄

(y
x̄

)−6+δ
dy

so that s̃(∞) <∞ and in particular

x̄6+δ x
−5−δ

5 + δ
≤ s̃(∞)− s̃(x) =

∫ ∞
x

ρ̃(y)dy ≤ x̄6−δ x
−5+δ

5− δ
.

Together with (4.30), this implies that

x̄2δ

5 + δ
x1−2δ ≤ s̃(∞)− s̃(x)

ρ̃(x)
≤ x̄−2δ

5− δ
x1+2δ

for every x > x̄, so

x̄2δ

5 + δ
x−3−2δ ≤ s̃(∞)− s̃(x)

σ2
Y (x)ρ̃(x)

≤ x̄−2δ

5− δ
x−3+2δ.

Therefore, as δ < 1 by the choice of x̄, we have that s̃(∞)−s̃
ρ̃σ2
Y
∈ L1

loc(∞−) and

condition (4.23) is satisfied. By Theorem 4.6, it follows that Z defined in
(4.26) is not a martingale.

We give now an example of a process whose optional projection into the
delayed filtration is not a local martingale but admits an equivalent local
martingale measure.
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Example 4.7. Consider again the filtration G = (Gt)t≥0 generated by the
Brownian motion W in (4.4), and define F = (Ft)t≥0, with Ft := Gt−ε, t ≥ 0,
ε > 0. Introduce the process M = (Mt)t≥0 with Mt = Xt −

∫ t
0 (1 + s)dWs,

where X is the inverse three-dimensional Bessel process. Thus

oM t+ε = E[Mt+ε|Gt] = E
[
Xt+ε −

∫ t+ε

0
(1 + s)dWs

∣∣∣Gt]
= Xterf

(
1

Xt

√
2ε

)
−
∫ t

0
(1 + s)dWs, t ≥ 0,

where the last equality comes from Proposition 4.4 and from the martingale
property of

∫
(1 + s)dWs. From (4.12) we have therefore

d oM t+ε =

(√
2

πε
e
− 1

2εX2
t Xt − erf

(
1

Xt

√
2ε

)
X2
t − (1+t)

)
dWt−

√
2

π
ε−

3
2 e
− 1

2εX2
t dt, t ≥ 0.

It is then clear that oM is not an F-local martingale. This implies that

Mloc(M,G) ∩Mo
loc(M,F) = ∅,

since Mloc(M,G) = {P} by Remark 4.1, so that properties (P1), (P3) and
(P4) have a negative answer.
We now introduce the Doléans exponential

Z̄t = Et

(∫
ᾱsdWs

)
, t ≥ 0,

with

ᾱt =

√
2
π ε
− 3

2 e
− 1

2εX2
t√

2
πεe
− 1

2εX2
t Xt − erf

(
1

Xt
√

2ε

)
X2
t − (1 + t)

, t ≥ 0,

and define the measure Q̄ by dQ̄
dP |Gt = Z̄t, t ≥ 0. By (4.28) we have that

|ᾱt| ≤
√

2
π ε
− 3

2 (1 + t)−1 for all t ≥ 0. Thus

exp

(
1

2

∫ ∞
0
|ᾱs|2ds

)
≤ exp

(
1

π
ε−3

∫ ∞
0

(1 + s)−2ds

)
<∞,

so Novikov’s condition is satisfied and Z̄ is a uniformly integrable martingale.
By Girsanov’s Theorem, Q̄ ∈Mloc(

oM,G). Hence, properties (P2) and (P5)
are satisfied.

23



Optional projection under ELMM

Remark 4.8. In the above analysis G represents the natural filtration of
X. By (4.13) we obtain that (P1) is not satisfied in this setting. How-
ever, (P1) still does not hold if G is given by the filtration generated by
(B1, B2, B3), and F is the delayed filtration of FX , i.e., Ft = FXt−ε, t ≥ 0,
ε > 0. In this case there exist infinitely many measures in Mloc(X,G),
but Mloc(X,FX ,FX) = {P}. Corollary 3.7 implies that for every Q ∈
Mloc(X,G) we have

EQ[Xt|Ft] = EP [Xt|Ft], a.s., t ≥ 0.

Then Q,oX is a (Q,F)-local martingale if and only if Q is an equivalent local
martingale measure for oX, which has dynamics given in (4.12). However,
this cannot be the case because such a measure Q would be defined by a
density which is not a true martingale, by the same arguments as in the
proof of Theorem 4.5.

5 A stochastic volatility example

In this section we assume that X is given by a stochastic volatility process
which is a local martingale with respect to a filtration G. We then consider a
sub-filtration F̂ of G such that property (P1) is satisfied even if the optional
projection of X into F̂ is not a local martingale. We provide Examples 5.7
and 5.8 to show when property (P2) or (P3) hold, respectively.
We introduce a three-dimensional Brownian motion B = (B1, B2, B3) on a
filtered probability space (Ω,F, P,G = (Gt)t≥0), and consider a stochastic
volatility model of the form

dXt = σ1v
α
t XtdB

1
t + σ2v

α
t XtdB

2
t , t ≥ 0, X0 = x > 0, (5.1)

dvt = a1vtdB
1
t + a2vtdB

2
t + a3vtdB

3
t + ρ(L− vt)dt, t ≥ 0, v0 = 1,

(5.2)

where α, ρ, L ∈ R+ and σ1, σ2, a1, a2, a3 ∈ R.

Remark 5.1. The class of stochastic volatility processes (5.1)-(5.2) reduces
to the class considered in Sin [1998] when a3 = 0 and to the class presented
in Biagini et al. [2014] when ρ = 0 and α = 1. Therefore, all the results of
this section can be applied to these particular cases.

The next proposition states that, under a given condition on the coefficients
of (5.1)-(5.2), X is a strict G-local martingale under P but MM (X,G) 6= ∅.
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Proposition 5.2. Consider the unique strong solution1 (X, v) to the system
of SDEs (5.1)-(5.2). Then:

1. X is a local martingale, and is a true martingale if and only if

a1σ1 + a2σ2 ≤ 0.

2. For every T > 0 there exists a probability measure Q equivalent to P
on GT such that X is a true Q-martingale on [0, T ].

Proof. The proofs of the two claims are easy extensions of the proofs of
Theorem 3.2 of Sin [1998] and of Theorem 5.1 of Biagini et al. [2014], re-
spectively.

We now give two results that provide a relation between the expectation of
X and the explosion time of a process associated to the volatility v.

Lemma 5.3. Let (X, v) satisfy the system of SDEs (5.1)-(5.2). Then

E[Xt] = X0P ({v̂ does not explode on [0, t]}), t ≥ 0, (5.3)

where v̂ = (v̂t)t≥0 is given by

dv̂t =a1v̂tdB
1
t + a2v̂tdB

2
t + a3v̂tdB

3
t + ρ(L− v̂t)dt

+ (a1σ1 + a2σ2)v̂α+1
t dt, t ≥ 0, (5.4)

v̂0 = 1.

Proof. This result is a particular case of Proposition 5.9, which we give
below.

Lemma 5.4. The (unique) solution to equation (5.4) explodes to +∞ in
finite time with positive probability if and only if a1σ1 +a2σ2 > 0. Moreover,
if a1σ1 + a2σ2 > 0, it does not reach zero in finite time.

Proof. The result is given in Lemma 4.3 of Sin [1998] when a3 = 0, and
proved by using Feller’s test of explosions. In this case, the test is applicable
because v̂ is a one-dimensional Itô diffusion with respect to the Brownian
motion 1/|a|(a · B), with a = (a1, a2) and B = (B1, B2). The author
introduces σ = (σ1, σ2) and proves that v̂ explodes with positive probability
in finite time and does not reach the origin in finite time if a · σ > 0. In our
case, the proof comes as an easy extension by considering now a = (a1, a2, a3)
and σ = (σ1, σ2, 0).

1Existence and uniqueness of a strong solution to (5.1)-(5.2) can be proved as an
extension of [Sin, 1998, Remark 2.2].
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We now give an example for which property (P2) is satisfied. We start with
the following lemma, which is Proposition 5.2 of Karatzas and Ruf [2016].

Lemma 5.5. Fix an open interval I = (`, r) with −∞ ≤ ` < r ≤ ∞ and
consider the stochastic differential equation

dYt = s(Yt) (dWt + b(Yt)dt) , t ≥ 0, Y0 = ξ, (5.5)

where ξ ∈ I and W denotes a Brownian motion. Suppose that the functions
b : (I,B(I)) → (R,B(R)) and s : (I,B(I)) → (R \ {0},B(R \ {0})) are
measurable and satisfy∫

K

(
1

s2(y)
+

∣∣∣∣ b(y)

s(y)

∣∣∣∣) dy <∞ for every compact set K ⊂ I. (5.6)

Call τ ξ the first time when the weak solution Y to (5.5), unique in the sense
of probability distribution, exits the open interval I. Introduce the function
U : (0,∞)× I → R+ defined by

U(t, ξ) := P (τ ξ > t).

If the functions s(·) and b(·) are locally Hölder continuous on I, the function
U(·, ·) is of class C ([0,∞)× I) ∩ C1,2 ((0,∞)× I).

Applying Lemma 5.5 to our setting, we get the following result.

Lemma 5.6. Consider the solution v̂ to equation (5.4), supposing ρ = 0
and a1σ1 + a2σ2 > 0. Define the function m : (0,∞)→ R+ by

mt = P ({v̂ does not explode on [0, t]}). (5.7)

Then m ∈ C1((0,∞)).

Proof. Note that v̂ is a one-dimensional Itô diffusion with respect to the
Brownian motionW = 1/|a|(a·B), with a = (a1, a2, a3) andB = (B1, B2, B3).
In particular, we have

dv̂t = |a|v̂tdWt + (a1σ1 + a2σ2)v̂α+1dt, t ≥ 0.

We are thus in the setting of Lemma 5.5 with I = (0,∞) and

s(x) = |a|x, b(x) =
a1σ1 + a2σ2

|a|
xα.
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Condition (5.6) is satisfied because, for every K compact interval of (0,∞),
we have∫

K

(
1

s2(y)
+

∣∣∣∣ b(y)

s(y)

∣∣∣∣) dy =

∫
K

(
1

|a|y2
+

∣∣∣∣a1σ1 + a2σ2

|a|2
yα−1

∣∣∣∣) dy <∞.
Moreover, s(·) and b(·) are locally Hölder continuous on (0,∞). The result
follows from Lemma 5.5, since v̂ does not reach zero in finite time by Lemma
5.4.

We are now ready to state our first result in this setting.

Example 5.7. Consider the solution (X, v) to the system of SDEs (5.1)-
(5.2), supposing ρ = 0 and a1σ1+a2σ2 > 0. Let H be the filtration generated
by (B1, B2, B3), and F the filtration generated by a fourth Brownian motion
B4, independent of (B1, B2, B3). Introduce the F-local martingale N =
(Nt)t≥0 whose dynamics are given by

dNt = (1 +m′t)(1 + t)dB4
t , t ≥ 0,

where m′ is the first derivative of the function m we introduce in (5.7).
Then the process R := N +X is an H∨F-local martingale, and its optional
projection into F is oR = N +m by Lemma 5.3. Thus oR is not an F-local
martingale, because m is not constant by Lemma 5.4.
We introduce the stochastic exponential

Zt = Et

(∫
αsdB

4
s

)
, t ≥ 0

with

αt =
m′t

(1 +m′t)(1 + t)
, t ≥ 0.

Note that m′ ∈ C((0,∞)) by Lemma 5.6. It follows that Novikov’s condi-
tion is satisfied, so Z is an F-uniformly integrable martingale and we can
introduce the probability measure Q ∼ P defined by Z. Then oR = N +m
is a (Q,F)-local martingale. Hence, property (P2) is satisfied.

Example 5.8. Again in the setting and with the notations of Example
5.7, introduce a (P,F)-strict local martingale Y , independent of H. Let
Q be the probability measure from Proposition 5.2 under which X is a
true martingale. Since the density of Q with respect to P only depends
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on (B1, B2, B3), Y is a strict local martingale also with respect to Q, and
U := Y +X as well. The Q-optional projection of U into F is given by

Q,oU t = Yt + E[Xt] = Yt +X0, t ≥ 0,

which is a (Q,F)-local martingale.
Thus P /∈Mo

loc(U,F) but

ML(U,H ∨ F) ∩Mo
loc(U,F) 6= ∅,

i.e., property (P3) holds for U .

We now find an example of a sub-filtration F̂ ⊂ G such that the optional
projection of X into F̂ is not an F̂-local martingale. The next proposition is
a generalization of Lemma 4.2 of Sin [1998].

Proposition 5.9. Suppose that the two-dimensional process (X, v) satis-
fies the system of SDEs (5.1)-(5.2), and call F the natural filtration of B1.
Introduce the process (X̂t)t≥0 defined by

X̂t = B1
t − σ1

∫ t

0
vαs ds, t ≥ 0 (5.8)

and call F̂ the natural filtration of X̂. Then for every F̂- stopping time τ̂
there exists an F-stopping time τ such that

E[XT∧τ̂ ] = X0P ({v̂ does not explode on [0, T ∧ τ ]}), (5.9)

where v̂ is defined in (5.4).

Proof. By (5.1), X is a positive local martingale. Define a sequence of
stopping times (τn)n∈N by

τn = inf

{
t ∈ R+ : |σ1 + σ2|2

∫ t

0
v2α
s ds ≥ n

}
∧ T,

with v = (vt)t≥0 in (5.2). Then the process Xn defined by

Xn
t = Xt∧τn , t ≥ 0 (5.10)

is a local martingale for n ∈ N. Define Zn by

Znt = σ1

∫ t∧τn

0
vαs dB

1
s + σ2

∫ t∧τn

0
vαs dB

2
s , t ≥ 0.
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Then Xn is the stochastic exponential of Zn, and since [Zn, Zn]t ≤ n for
all t ≥ 0, Xn is a (P,G)-martingale for every n ∈ N by Novikov’s condition
and (τn)n∈N reduces X with respect to (P,G).
Since Xn stopped at τ̂ is also a martingale, we can define a new probability
measure Qn on (Ω,GT ) as

Qn(A) =
1

X0
E[XT∧τn∧τ̂1A] for all A ∈ GT .

By the Lebesgue dominated convergence theorem,

E[XT∧τ̂ ] = lim
n→∞

E[XT∧τn∧τ̂1{τn≥T∧τ̂}] = X0 lim
n→∞

Qn (τn ≥ T ∧ τ̂) , (5.11)

by definition of Qn. Moreover, Girsanov’s Theorem implies that the pro-
cesses B(n,1), B(n,2) defined by

B
(n,1)
t =B1

t − σ1

∫ t

0
1{s≤τn∧τ̂}v

α
s ds, t ≥ 0 (5.12)

B
(n,2)
t =B2

t − σ2

∫ t

0
1{s≤τn∧τ̂}v

α
s ds, t ≥ 0 (5.13)

are Brownian motions under Qn, n ≥ 0. Therefore under Qn, the process v
has the dynamics

dvt = a1vtdB
(n,1)
t + a2v2dB

(n,2)
t + a3vtdB

3
t + ρ(L− vt)dt

+ 1{t≤τn∧τ̂}(a1σ1 + a2σ2)vα+1
t dt, t ≥ 0, v0 = 1. (5.14)

Consider now the process X̂ introduced in (5.8) and define v̂ as the unique,
strong solution2 of the SDE

dv̂t = a1v̂tdB
1
t + a2v̂tdB

2
t + a3vtdB

3
t + ρ(L− v̂t)dt+ (a1σ1 + a2σ2)v̂α+1

t dt,
(5.15)

t ≥ 0. Note that on [0, τn ∧ τ̂ ], (X̂, v) has the same distribution under Qn
as (B1, v̂) under P .
By the Doob measurability theorem (see, e.g., [Kallenberg, 2006, Lemma 1.13]),
there exists a measurable function h : C[0,∞) → R+ such that τ̂ = h(X̂·).
Set τ = h(B1

· ). As T ∧ τ̂ is a σ(X̂)-stopping time there exists, by the Doob
measurability theorem again, a B(C[0, t])-measurable function Ψt such that
1{t≥T∧τ̂} = Ψt(X̂

t
· ). Thus

1{τn≥T∧τ̂} = Ψτn(X̂τn
· ), n ∈ N.

2It can be seen that admits an unique, strong solution following the same arguments
as in the proof of Lemma 4.2 of Sin [1998].
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Analogously, by the construction of τ , we have

1{τ̂n≥T∧τ} = Ψτ̂n(B1,τ̂n
· ), n ∈ N,

where (τ̂n)n∈N are stopping times for the natural filtration of v̂, defined by

τ̂n = inf

{
t ∈ R+ : |σ1 + σ2|2

∫ s

0
v̂2α
u du ≥ n

}
, n ≥ 1.

Since on [0, τn ∧ τ̂ ], (X̂, v) has the same law under Qn as (B1, v̂) under P ,

we have that Ψτn(X̂τn
· ) has the same law under Qn as Ψτ̂n(B1,τ̂n

· ) under P .
Thus, from (5.11) we get

E[XT∧τ̂ ] = X0 lim
n→∞

Qn (τn ≥ T ∧ τ̂)

= X0 lim
n→∞

EQn
[
Ψτn(X̂τn

· )
]

= X0 lim
n→∞

EP
[
Ψτ̂n(B1,τ̂n

· )
]

= X0 lim
n→∞

P (τ̂n ≥ T ∧ τ)

= X0P (τ̂n ≥ T ∧ τ for some n)

= X0P (v̂ does not explode before time T ∧ τ) ,

and the proof is complete.

We are now ready to give the following

Theorem 5.10. Consider the stochastic volatility process X defined by

dXt = σ1v
α
t XtdB

1
t + σ2v

α
t XtdB

2
t , t ≥ 0, X0 = x > 0, (5.16)

dvt = a2vtdB
2
t + ρ(L− vt)dt, t ≥ 0, v0 = 1, (5.17)

i.e., the model introduced in (5.1)-(5.2) with a1 = a3 = 0, and suppose
that a2σ2 > 0. Consider the filtration F̂ ⊂ G, generated by the process X̂
defined in (5.8). Then the P -optional projection of X into F̂ is not an F̂-local
martingale.

Proof. The process X in (5.16) is a strict local martingale by Proposition
5.2. By Proposition 5.9, for every F̂-stopping time τ̂ there exists a σ(B1)-
stopping time τ such that

E[XT∧τ̄ ] = X0P ({v̂ does not explode on [0, T ∧ τ ]}), (5.18)
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where v̂ is now given by

dv̂t = a2v̂tdB
2
t + ρ(L− v̂t)dt+ a2σ2v̂

α+1
t dt, t ≥ 0, v̂0 = 1.

Since a1σ1 + a2σ2 = a2σ2 > 0, Lemma 5.4 implies that

P ({v̂ does not explode on [0, t]}) < 1 for all t > 0.

In particular,

P ({v̂ does not explode on [0, T ∧ η]}) < 1

for every σ(B1)-stopping time η with P (η =∞) < 1, because v̂ is indepen-
dent of B1. Together with (5.18), this implies that X cannot be localized
by any sequence of F̂-stopping times. Consequently, the optional projection
of X into F̂ cannot be an F̂-local martingale by Theorem 3.7 of Föllmer and
Protter [2011].

Proposition 5.2 and Theorem 5.10 provide a further example of two prob-
ability measures P and Q, of a P -local martingale X and of a non trivial
filtration F̂ ⊂ G, such that the optional projection of X into F̂ under P is
not a P -local martingale but the optional projection of X into F̂ under Q is
a Q-martingale.

A Optional projections and optimal transport

Consider a probability space (Ω,F,P) equipped with filtrations F = (Ft)t≥0

and G = (Gt)t≥0, F ⊂ G, both satisfying the usual hypothesis of right-
continuity and completeness.
For G-adapted càdlàg processes X and Z, we denote X �G Z if Z −X is a
nonnegative G-supermartingale.

Proposition A.1. Let X be a nonnegative, càdlàg G-supermartingale. Then
X is a G-local martingale if and only if X �G Z for all G- supermartingales
Z ≥ X.

Proof. Assume that X is a local martingale, and consider a supermartingale
Z ≥ X. Let (τn)n≥0 be a localizing sequence for X. By Fatou’s lemma,

E[Zt−Xt|Fs] ≤ lim inf
n→∞

E[Zt∧τn−Xt∧τn |Fs] ≤ Zs−lim inf
n→∞

E[Xt∧τn |Fs] = Zs−Xs

for every 0 ≤ s ≤ t, so Z −X is a supermartingale.
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Suppose now that Z −X is a nonnegative supermartingale for every super-
martingale Z ≥ X. Assume also that X is not a local martingale, i.e., that
it is a strict supermartingale. Then X has the Doob-Meyer decomposition

Xt = Mt − Yt, t ≥ 0,

where M ≥ X is a nonnegative local martingale and Y 6= 0 is a nondecreas-
ing process. Thus M ≥ X is a supermartingale for which M −X = Y is not
a supermartingale, which is a contradiction.

Proposition A.1 can be used to characterize when the optional projection
of a local martingale remains a local martingale, and to provide a sufficient
and necessary condition for this property via optimal transport.

Theorem A.2. For a nonnegative G-local martingale X, oX is a F-local
martingale if and only if, for every F-supermartingale Y ≥ oX, there is a
G-supermartingale Z ≥ X with oZ �F Y .

Proof. If oX is a local martingale, we may choose Z = X. To prove the
converse, Z −X is a nonnegative G-supermartingale, oZ − oX is a nonneg-
ative F-supermartingale, so Y − oX = Y − oZ + oZ − oX is a nonnegative
F-supermartingale.

Given laws νs, νt on R+, we denote νs �cdo νt if
∫
fdνs ≤

∫
fdνt for all

f ∈ Cd, where Cd is the set of real-valued convex and decreasing functions
on R+. Let now X be a G-adapted nonnegative process with law ν and νs
be the law of Xs, s ≥ 0. If νs �cdo νt for all s ≤ t, we say that the law ν
is convex decreasing. In this case, there exists a Markov process with law ν
which is a G-supermartingale; see Theorem 3 of Kellerer [1972]. Also note
that if a process is a G-supermartingale, its law is convex decreasing.
We denote by S(ν) the set of joint laws of (Z,X), where Z ranges over all
supermartingales dominating X. For π ∈ S(ν), πt denotes the joint law of
(Zt, Xt). An application of Proposition A.1 leads to the following result.

Proposition A.3. Given a nonnegative G-adapted process X with the law
ν, X is a G-local martingale if and only if for every t ≥ 0,

sup
π∈S(ν)

sup
s<t

sup
f∈Cd

[∫
f(z − x)dπt(z, x)−

∫
f(z − x)dπs(z, x)

]
≤ 0. (A.1)

Proof. If (A.1) does not hold, there exists a supermartingale Z ≥ X such
that the law of Z − X is not convex decreasing. Then Z − X is not a
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supermartingale, so X is not a local martingale by Proposition A.1. Suppose
now that X is not a local martingale. By Proposition A.1, there exists a
supermartingale Z ≥ X such that Z − X is not a supermartingale. Then
the law of Z −X is not convex decreasing, and (A.1) fails.
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