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Abstract

We study the behaviour of the long-term yield in a HJM setting for
forward rates driven by Lévy processes. The long-term rates are investi-
gated by examining continuously compounded spot rate yields with matu-
rity going to infinity. In this paper we generalise the model of El Karoui,
Frachot and Geman [19] by using Lévy processes instead of Brownian
motions as driving processes of the forward rate dynamics, and analyse
the behaviour of the long-term yield under certain conditions which en-
compass the asymptotic behaviour of the interest rate model’s volatility
function as well as the variation of the paths of the Lévy process. One of
the main results is that the long-term volatility has to vanish except in
the case of a Lévy process with only negative jumps and paths of finite
variation serving as random driver. Furthermore, we study the required
asymptotic behaviour of the volatility function so that the long-term drift
exists.

1 Introduction

Long-term interest rates are important for the pricing and hedging of a number
of different financial instruments, including for example long-term fixed income
securities, life insurance, accident insurance or long-term interest rate swaps.
Further, we are seeing now a resurgence of very long-term debt issuance. For
instance, the United Kingdom plans to issue bonds with time to maturity of
100 years and even perpetuals (see, for example, Focus Money [12]). Besides
these financial instruments there are situations in which the time horizon of
cash flows extends beyond the limit of the observable term structure of interest
rates: valuation of required financial resources for public and private retirement
systems, funding of long-term infrastructure projects and determining compen-
satory adjustments in the course of a divorce or an accident. From an economic
and financial point of view it is then important to investigate the behaviour of
interest rates over a long time horizon.

In the literature there are different understandings of the meaning of “long-
term” interest rates. Yao [29] investigates yield curves with time to maturity
beyond 30 years, Shiller [27] looks at bonds with over 20 years to maturity
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whereas the European Central Bank [9] designates its values of market yields
of government bonds with maturities close to 10 years as long-term interest
rates. A natural approach to the concept “long-term” is to consider interest rate
systems in the limit as the maturity goes to infinity, as considered, for example,
by Dybvig et al. [5] and by El Karoui et al. [19]. We adapt this approach here
and define the long-term interest rate `t at time t as the yield of zero-coupon
bonds prevailing at time t with time to maturity tending to infinity.

Though the modelling and the corresponding convergence behaviour of the
long-term yield has been topic of various publications, further research is still
required. Some researchers approached the topic from a macroeconomic point
of view like Mankiw [23] or Gürkaynak et al. [15]. Other more mathematical
works were published by Dybvig et al. [5], El Karoui et al. [19], Yao [29] and
Zubchenko [31]. The main result of [5] is that the long-term rate is necessarily
a non-decreasing process. This result has been clarified and extended in several
other works, e.g. [24], [17], [14], and [18]. In [19] the behaviour of the long-term
yield is studied in a HJM-type model, where the stochastic driver is a Brownian
motion. However the resulting analysis in [19] is not completely satisfactory
since no jumps are included in the underlying model. The aim of this paper is
then to generalise this approach by considering interest rates dynamics driven
by a multivariate Lévy process. In this more general setting we have to impose
stronger requirements on the volatility process than in [19] in order to guarantee
the convergence of the long-term yield. Nevertheless, we are able to provide
explicit formulas for the long-term yield, long-term drift and long-term volatility,
all depending only on the Lévy process and the volatility. One of the main results
is that the long-term volatility has to vanish except in the case of a Lévy process
with only negative jumps and paths of finite variation serving as random driver
(see Theorem 3.6).

The results of our paper provide a further answer concerning the investi-
gation of the behaviour of long-term interest rates. A main advantage of our
approach is to consider a wider class of models that allow jumps to affect the
dynamics of the long-term yields. With the use of Lévy processes as stochastic
driver a more accurate fit of the resulting long-term yield curve can be obtained
than in the Brownian motion setting, since jumps can be encompassed. Further-
more, we provide a characterisation of the volatility long-term structure that
generates non-trivial and non-explosive long-term interest rates.

The paper is organised as follows. In Section 2 we introduce a Lévy HJM
framework derived from [8] and [20] and state the requirements on the volatility
needed for the convergence of the long-term yield in Assumption I. We are able
to consider a quite general setting except for restrictions given by Assumptions
(A4) and (A5), concerning the integrability of the volatility process. To maintain
a sufficient flexibility of the setting, (A4) is only required for the long-term time
horizon and may not be satisfied for shorter maturities. Assumption (A5),
however, is needed for all maturities for the calculations of the yield curve.
Then, in Section 3 the long-term yield is examined with regard to its convergence
properties. Thereafter, in Section 4 we provide an example, where we compute
explicitly the long-term yield using a jump-diffusion Lévy process as stochastic
driver and a volatility process fulfilling the required assumptions.
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2 Lévy HJM Framework

In 1992 Heath et al. proposed in [16] a new framework for modelling the entire
forward curve directly, where the forward rate is described by a continuous Itô
process driven by a possibly d-dimensional Brownian motion. Here we consider
an extended version of the HJM-Framework where a Lévy process serves as
random driver in order to include also jumps in the model for the bond dynamics
as in [7], [8], [11], [20] and [30]. In particular we assume a frictionless market
for bonds.

We denote the jump of a stochastic process (Yt)t≥0 at time s by ∆Ys :=

Ys − Ys− whereas Ys− := limu↑s Yu. Let X =
(
X1, . . . , Xd

)
be a d-dimensional

Lévy process with Lévy measure ν and decomposition

Xt = γt+Wt +
∑
s∈[0,t]

∆Xs1{‖∆Xs‖>1} +

∫
{‖x‖≤1}

x (Nt(·, dx)− t ν(dx)) ,

where W := (Wt)t≥0 is a Brownian motion on Rd with positive definite co-

variance matrix A ∈ Rd×d, γ ∈ Rd, and for any set B ∈ Rd, 0 /∈ B̄, NB
t =∫

B
Nt(·, dx) is a Poisson process independent of W . The Lévy process is defined

on a probability space (Ω,F ,P) endowed with the completed canonical filtration
(Ft)t≥0 associated with X.

Following [2] and [10] we consider the following bond market setting. By a
T -maturity zero-coupon bond we mean a contract that guarantees its holder the
payment of one unit of currency at time T , with no intermediate payments. The
contract value at time t ≤ T is denoted by P (t, T ). The bond market satisfies
the following hypotheses: (1) there exists a frictionless market for T -bonds for
every maturity T ≥ 0; (2) P (T, T ) = 1 for every T ≥ 0; (3) for each fixed t, the
zero-coupon bond price P (t, T ) is differentiable with respect to the maturity T .

We assume that for all T ≥ 0 the bond price is given by

P (t, T ) = P (0, T ) · βt ·
exp
(∫ t

0
σ(s, T ) dXs

)
E
[
exp
(∫ t

0
σ(s, T ) dXs

)] , t ∈ [0, T ] , (2.1)

where βt := exp
(∫ t

0
rs ds

)
is the money market account with rt denoting the

short rate at time t. In particular this implies that P(t,T )
βt

, t ∈ [0, T ], is a mar-
tingale under P, i.e. P is assumed to be the risk-neutral measure.

The volatility function σ is d-dimensional and deterministic in every dimen-
sion, i.e.

σ(t, T ) =
(
σ1(t, T ) , . . . , σd(t, T )

)
, (2.2)

where
σi : [0,∞]× [0,∞]→ [0,∞] , (s, t) 7→ σi(s, t) (2.3)

denotes the volatility of the i-th random component of the yield. In particular∫ t
0
σ(s, T ) dXs =

∑d
i=1

∫ t
0
σi(s, T ) dXi

s. The partial derivatives of σ are denoted
the following way:

σ1(s, T ) :=
∂

∂s
σ(s, t) , σ2(s, t) :=

∂

∂t
σ(s, t) .

We denote the Euclidean scalar product on Rd as x·y :=
∑d
i=1x

iyi for x, y ∈ Rd,
x :=

(
x1, . . . , xd

)
, y :=

(
y1, . . . , yd

)
and the respective norm by ‖·‖.
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Assumption I. We assume that this volatility function σ satisfies the following
properties:

(A1) For all i ∈ {1, . . . , d} : σi(s, t) > 0 for all t ∈ [0,∞] , s ∈ [0, t[.

(A2) For all i ∈ {1, . . . , d} : σi(s, t) = 0 for all s ≥ t, t ∈ [0,∞].

(A3) For all i ∈ {1, . . . , d} : σi, σi1, σ
i
2 are càglàd in both components.

(A4) There exists a càglàd function φ ∈ L1(R+) such as for all T ≥ 1

‖σ(s, T )‖
T

≤ φ(s) for all 0 ≤ s ≤ T .

(A5) There exists a function ψ ∈ L1(R+) such as for all T > 0 and for an
ε ∈ (0, 1)

|logE[exp((1 + ε)σ(r, T ) ·X1)]|
T

≤ ψ(r) for all 0 ≤ r ≤ T . (2.4)

Note that (A5) also implies that exp(σ(s, T ) ·X1) ∈ L1(P) for all 0 ≤ s ≤ T .
Otherwise we could find a T and s ≤ T such that E[exp(σ(s, T ) ·X1)] =∞ and
then ψ cannot dominate the left-hand side of (2.4) for all T .

Assumption (A4) is needed for the convergence of the volatility function
of long-term interest rates, hence we impose it for sufficiently long times of
maturity, say T ≥ 1. In this way, we also guarantee complete flexibility in the
choice of the model for the volatility of interest rates with short-term maturity.
This allows to find realistic models by distinguishing between short-term and
long-term interest rates modelling. On the contrary, condition (A5) is required
to hold for any T > 0 in order to obtain the analytical results of Lemma 2.4.

In the subsequent calculations we will use the logarithm of the moment-
generating function of X1, defined as

θ(u) := logE[exp (u ·X1)] , u ∈ Rd. (2.5)

Corollary 2.1. Under (A5), we get for all t, T ≥ 0:

E
[
exp

(∫ t

0

σ(s, T ) dXs

)]
= exp

(∫ t

0

θ(σ(s, T )) ds

)
. (2.6)

Proof. The proof uses the idea of Lemma 3.1 of [8]. However, we do not assume
here the boundedness of σ as in [8]. Hence, we have to follow a slightly different
approach. We take a partition 0 = t0 < t1 < · · · < tN+1 = t of [0, t] and get, as
described in [8]:

E

[
exp

(
N∑
k=0

σ(tk, T ) ·
(
Xtk+1

−Xtk

))]
= exp

(
N∑
k=0

θ(σ(tk, T )) (tk+1 − tk)

)
.

(2.7)
According to Theorem 53 of Chapter I, Section 7 of [25], the right-hand side of

the (2.7) converges to exp
(∫ t

0
θ(σ(s, T )) ds

)
almost surely. Now, we take a look
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at the left-hand side. By Theorem 21 of Chapter II, Section 5 of [25] it follows
that

exp

(
N∑
k=0

σ(tk, T ) ·
(
Xtk+1

−Xtk

)) N→∞−→ exp

(∫ t

0

σ(s, T ) dXs

)
(2.8)

in probability. To show (2.6) we have to prove that the convergence in (2.8)
holds in L1. To this purpose we show that the approximating sequence in (2.8)
is uniformly integrable by using Theorem II.22 of [4]. We define

K :=

{
exp

(
N∑
k=0

σ(tk, T ) ·
(
Xtk+1

−Xtk

))
|N ≥ 1

}
.

For all N ≥ 1 we have

E

[
exp

(
N∑
k=0

σ(tk, T ) ·
(
Xtk+1

−Xtk

))] (2.7)
= exp

(
N∑
k=0

θ(σ(tk, T )) (tk+1 − tk)

)
(2.4)

≤ exp

(
T

N∑
k=0

ψ(tk) (tk+1 − tk)

)

< ∞ , (2.9)

since by (A5) ψ ∈ L1(R+). It follows from (2.9) that K ⊆ L1(P). Further, we
have to show that there exists a positive function G : R+ → R+ such that

lim
x→∞

G(x)

x
=∞ and sup

f∈K
E[G(|f |)] <∞. (2.10)

Let us take G(x) = x1+ε with 0 < ε < 1. Then we have

lim
x→∞

G(x)

x
= lim
x→∞

xε =∞

and

sup
f∈K

E[G(|f |)] = sup
N≥1

E

(exp

(
N∑
k=0

σ(tk, T ) ·
(
Xtk+1

−Xtk

)))1+ε


(2.7)
= sup

N≥1
exp

(
N∑
k=0

θ((1 + ε)σ(tk, T )) (tk+1 − tk)

)
(2.4)

≤ sup
N≥1

exp

(
T

N∑
k=0

ψ(tk) (tk+1 − tk)

)

< ∞

because ψ ∈ L1(R+). Hence, since K ⊆ L1(P) and (2.10) holds, it follows by
Theorem II.22 of [4] that K is uniformly integrable.

5



Note that from Assumption (A5) and Corollary 2.1 follows that for all t, T ≥ 0

E
[
exp

(∫ t

0

σ(s, T ) dXs

)]
<∞ .

This holds because for all t, T ≥ 0∣∣∣∣∫ t

0

θ(σ(s, T )) ds

∣∣∣∣ ≤ ∫ t

0

|θ(σ(s, T ))| ds
(2.4)

≤ T

∫ t

0

ψ(s) ds <∞

since ψ ∈ L1(R+), and consequently

exp

(∫ t

0

θ(σ(s, T )) ds

)
<∞

for all t, T ≥ 0.
Putting all this together, we have derived the following representation for

the bond price process.

Corollary 2.2. Under Assumption I the following equation holds for the bond
price:

P (t, T ) = P (0, T ) · exp

(∫ t

0

(rs − θ(σ(s, T ))) ds+

∫ t

0

σ(s, T ) dXs

)
.

Proof. The result follows by Corollary 2.1 and the definition of the money-
market account (βt)t≥0 since we have

t1∫
0

t2∫
0

σ2(v, s) dXv ds =

t2∫
0

t1∫
0

σ2(v, s) ds dXv ∀ t1, t2 ≥ 0, (2.11)

due to the Fubini theorem for semimartingales (see Chapter IV, Section 6, The-
orem 65 of [25]).

We now consider the instantaneous forward rate with maturity T prevailing at
time t, f(t, T ) := − ∂

∂T logP (t, T ). In the Lévy HJM framework we obtain that
f(t, T ) , t ∈ [0, T ], has the following form.

Lemma 2.3. For all T ≥ 0 the forward rate process f(·, T ) exists under As-
sumption I and for all t ∈ [0, T ] has the form

f(t, T ) = f(0, T ) +

t∫
0

θ′(σ(s, T )) · σ2(s, T ) ds−
t∫

0

σ2(s, T ) dXs, (2.12)

where f(0, T ) is determined by the initial forward rate structure.

Proof. The proof follows starting with equation (2.1) and using Corollary 2.1,
Theorem “Differentiationssatz” in Chapter 2.6 of [22], and the integration by
parts formula.
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Note that the integral
∫ t

0
θ′(σ(s, T )) · σ2(s, T ) ds is well-defined because of As-

sumption (A3).
We now introduce the continuously compounded spot rate for [t, T ] as

Y (t, T ) := − logP (t, T )

T − t
. (2.13)

From now on we will indicate the function T 7→ Y (t, T ) as yield curve. We recall
that the term “yield curve” is used differently in the literature. For example, in
[2] it is a combination of simply compounded spot rates for maturities up to one
year and annually compounded spot rates for maturities greater than one year.
In this paper we will use (2.13) as the yield in t for [t, T ] which is equivalent to
the definition in Section 2.4.4 of [10].

Now, we compute the yield in our Lévy setting.

Lemma 2.4. Let 0 ≤ t < T . Under Assumption I the yield Y (t, T ) , t ∈ [0, T ],
is:

Y (t, T ) = Y (0; t, T ) +

t∫
0

θ(σ(s, T ))−θ(σ(s, t))

T − t
ds−

t∫
0

(
σ(s, T )−σ(s, t)

T − t

)
dXs ,

(2.14)

where

Y (0; t, T ) :=
1

T − t

(∫ T

t

f(0, u) du

)
. (2.15)

Proof. Since P (t, T ) = exp
(
−
∫ T
t
f(t, s) ds

)
we obtain

Y (t, T ) =
1

T − t

 T∫
t

f(t, u) du


(2.12)

=

T∫
t

f(0,u)

T − t
du+

T∫
t

t∫
0

θ′(σ(s,u))·σ2(s,u)

T − t
ds du−

T∫
t

t∫
0

σ2(s,u)

T − t
dXs du

(∗)
=

(2.15)
Y (0; t, T ) +

1

T−t

 t∫
0

T∫
t

θ′(σ(s,u))·σ2(s,u) du ds−
T∫
t

t∫
0

σ2(s,u) dXs du


(2.11)

= Y (0; t, T ) +
1

T−t

 t∫
0

T∫
t

θ′(σ(s,u))·σ2(s,u) du ds−
t∫

0

T∫
t

σ2(s,u) du dXs


= Y (0; t, T ) +

t∫
0

θ(σ(s,T ))− θ(σ(s,t))

T − t
ds−

t∫
0

(
σ(s,T )− σ(s,t)

T − t

)
dXs .

At (∗) we used the standard Fubini theorem for deterministic functions.
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3 Long-Term Yield in a Lévy Setting

3.1 Vanishing Long-Term Volatility

In this section we introduce the definition of the long-term yield and analyse its
behaviour in the Lévy HJM framework outlined in Section 2.

Definition 3.1. The long-term yield (`t)t≥0 is the process denoted by

`t = lim
T→∞

Y (t, T ) , (3.1)

where (Y (t, T ))t≥0 is the yield process for T ≥ 0 defined by equation (2.14).

Definition 3.2. Let 0 ≤ t < T . If the bond price is defined as in (2.1), the
long-term drift (µ∞(t))t≥0 is the deterministic process denoted by

µ∞(t) = lim
T→∞

θ(σ(t, T ))

T − t
, (3.2)

where θ(·) is the logarithm of the moment-generating function of X1 defined by
equation (2.5) and (σ(t, T ))t≥0 is the deterministic volatility process defined by
equations (2.2) and (2.3).
Furthermore, the long-term volatility (σ∞(t))t≥0 is the d-dimensional, deter-
ministic process denoted by

σ∞(t) = lim
T→∞

σ(t, T )

T − t
, (3.3)

where (σ(t, T ))t≥0 is the deterministic volatility process defined by equations
(2.2) and (2.3).

Here we are supposing that the limits (3.1), (3.2) and (3.3) are well-defined. By
using the following results, we characterise the long-term yield as an integral of
µ∞ and σ∞.

Proposition 3.3. Let 0 ≤ t < T . The long-term yield at 0 is

lim
T→∞

Y (0; t, T ) = lim
T→∞

Y (0, T ) = `0 a.s. (3.4)

Proof. We have that

lim
T→∞

Y (0; t, T )
(2.15)

= lim
T→∞

1

T − t

T∫
t

f(0, u) du
(∗)
= lim

T→∞

1

T − t

T∫
0

f(0, u) du

= − lim
T→∞

1

T
logP (0, T ) = lim

T→∞
Y (0, T )

(3.1)
= `0 .

In (∗) we used the fact that by our assumptions on the bond market, there exists

for all t ≥ 0 a bond price P (0, t) = exp
(
−
∫ t

0
f(0, u) du

)
, hence

∫ t
0
f(0, u) du <∞

and lim
T→∞

1
T−t

∫ t
0
f(0, u) du = 0 for all t ≥ 0.
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Proposition 3.4. Under the setting outlined in Section 2 and Assumption I,
it holds for all t ≥ 0:

lim
T→∞

t∫
0

(
σ(s, T )− σ(s, t)

T − t

)
dXs =

t∫
0

σ∞(s) dXs,

where (σ∞(s))s≥0 is the long-term volatility process defined by equation (3.3)
and the convergence is uniformly on compacts in probability (ucp).

Proof. Let t ≤ T and T ≥ 1. We note that

lim
T→∞

t∫
0

σ(s, T )− σ(s, t)

T − t
dXs = lim

T→∞

t∫
0

σ(s, T )− σ(s, t)

T
dXs . (3.5)

Hence we study only the limit on the right-hand side.
First, we note that for all compact intervals [a, b] with a, b ≥ 0:

1

T
sup
t∈[a,b]

∣∣∣∣∫ t

0

σ(s, t) dXs

∣∣∣∣ <∞ a.s.

because X is a semimartingale and σ is simple predictable as a deterministic
process (see Theorem 11 of Chapter II, Section 4 of [25]) and converges to 0
a.s., hence in probability. Therefore

1

T

∫ t

0

σ(s, t) dXs
T→∞−→ 0 in ucp. (3.6)

We define HT :=
(
HT
s

)
s≥0

with

HT
s :=

σ(s, T )

T
.

Then for T →∞ : HT
s → σ∞(s) a.s. for all s ≥ 0.

Due to (A4) there exists φ := (φ(s))s≥0 with

‖σ(s, T )‖
T

≤ φ(s) , 0 ≤ s ≤ T ,

for T ≥ 1.
Therefore, we get for all 0 ≤ s ≤ T :∥∥HT

s

∥∥ ≤ φ(s) ,

where φ is a càglàd deterministic function, hence φ is locally bounded. Then
φ ∈ L(X) because of Theorem 15 of Chapter IV, Section 2 of [25].
Now, by the dominated convergence theorem for semimartingales (see Chapter
IV, Section 2, Theorem 32 of [25]) it follows that

t∫
0

σ(s, T )

T
dXs

T→∞−→
t∫

0

σ∞(s) dXs (3.7)
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in ucp. By Lemma 5.8 of [13] and (3.5), (3.6) and (3.7) we get:

t∫
0

(
σ(s, T )− σ(s, t)

T − t

)
dXs

T→∞−→
t∫

0

σ∞(s) dXs in ucp.

Proposition 3.5. Under the setting outlined in Section 2 and Assumption I it
is for all t ≥ 0:

lim
T→∞

t∫
0

θ(σ(s, T ))− θ(σ(s, t))

T − t
ds =

t∫
0

µ∞(s) ds ,

where (µ∞(s))s≥0 is the long-term drift process defined by equation (3.2) and
the convergence is almost surely.

Proof. Let T > 0. First, we note that for all t ≥ 0:

lim
T→∞

t∫
0

θ(σ(s, T ))− θ(σ(s, t))

T − t
ds = lim

T→∞

t∫
0

θ(σ(s, T ))− θ(σ(s, t))

T
ds. (3.8)

Next, notice that for all fixed t ≥ 0:

1

T

t∫
0

θ(σ(s, t)) ds
T→∞−→ 0 a.s. (3.9)

because θ(σ(s, t)) is a càglàd function for all s, t ≥ 0.
Since (A5) holds, by the dominated convergence theorem for deterministic func-
tions it follows a.s. that for all t ≥ 0:

lim
T→∞

t∫
0

θ(σ(s, T ))− θ(σ(s, t))

T − t
ds

(3.8)
= lim

T→∞

1

T

t∫
0

θ(σ(s, T )) ds− lim
T→∞

1

T

t∫
0

θ(σ(s, t)) ds

(3.9)
= lim

T→∞

1

T

t∫
0

θ(σ(s, T )) ds =

t∫
0

lim
T→∞

θ(σ(s, T ))

T
ds

(3.2)
=

t∫
0

µ∞(s) ds.

By Lemma 2.4, Proposition 3.3, Proposition 3.4, and Proposition 3.5 the long-
term yield can be written in the following way, whereas the convergence is in
ucp:

`t = `0 +

∫ t

0

µ∞(s) ds−
∫ t

0

σ∞(s) dXs, t ≥ 0 . (3.10)
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By the Lévy-Khintchine formula (see Theorem 43 of Chapter I, Section 4 in
[25]) we get a representation of the moment-generating function given by

MXt(u) := E
[
eu·Xt

]
= e−tψ(−iu), u ∈ Rd , (3.11)

where

ψ(u) :=
1

2
u ·Au− iγ · u+

∫
Rd

(
1− eiu·x + iu · x1{‖x‖≤1}

)
ν(dx)

with (A, ν, γ) being the characteristic triplet of X, i.e. A is the covariance matrix
of the d-dimensional Brownian motion W , ν is the Lévy measure on Rd, and γ
is a vector on Rd. Then, (A5) ensures that the moment-generating function of
X1 with parameter σ is well-defined, hence we get:

MX1
(σ(t, T )) = exp

(
γ · σ(t, T ) +

1

2
σ(t, T ) ·Aσ(t, T )

+

∫
{‖x‖>1}

(
eσ(t,T )·x − 1

)
ν(dx)

+

∫
{‖x‖≤1}

(
eσ(t,T )·x − 1− σ(t, T ) · x

)
ν(dx)

)
. (3.12)

This leads to the following formula for the long-term drift:

θ(σ(t, T ))
(2.5)
= logE[exp(σ(t, T ) ·X1)]

(3.11)
= logMX1(σ(t, T ))

(3.12)
= γ · σ(t, T ) +

1

2
σ(t, T ) ·Aσ(t, T )

+

∫
{‖x‖>1}

(
eσ(t,T )·x − 1

)
ν(dx)

+

∫
{‖x‖≤1}

(
eσ(t,T )·x − 1− σ(t, T ) · x

)
ν(dx) . (3.13)

Therefore the long-term drift is for all t ≥ 0:

µ∞(t)
(3.2)
= lim

T→∞

θ(σ(t, T ))

T − t
(3.13)

= lim
T→∞

1

T − t

(
γ · σ (t, T ) +

1

2
σ(t, T ) ·Aσ(t, T )

+

∫
{‖x‖>1}

(
eσ(t,T )·x − 1

)
ν(dx)

+

∫
{‖x‖≤1}

(
eσ(t,T )·x − 1− σ(t, T ) · x

)
ν(dx)

)
. (3.14)

Now, we want to know what happens to the long-term drift if the long-term
volatility exists. For this purpose we examine different cases of Lévy processes
regarding the jump sizes as well as the variation of the paths.

Theorem 3.6. Let X := (Xt)t≥0 be a Lévy process satisfying equation (2.1)
and 0 < ‖σ∞(t)‖ <∞. Under Assumption I:

11



(i) If X has only positive jumps or both positive and negative jumps, then
µ∞(t) ≡ ∞.

(ii) If X has only negative jumps and paths of infinite variation, then µ∞(t) ≡
∞.

(iii) If X has only negative jumps and paths of finite variation, then µ∞(t) ∈ R
for all t ≥ 0.

Proof. Let 0 < ‖σ∞(t)‖ <∞. Then there exists at least one i ∈ {1, . . . , d} such
that

σi(t, T ) ∈ O(T − t) , i.e. lim
T→∞

σi(t, T ) =∞. (3.15)

Further, this means that

lim
T→∞

eσ(t,T )·x = +∞ if x ∈ Rd+ (3.16)

and
lim
T→∞

eσ(t,T )·x = 0 if x ∈ Rd− . (3.17)

The long-term drift is given by equation (3.14). Therefore we will investigate
the different summands in (3.14). First, there is

γ ·
(

lim
T→∞

σ(t, T )

T − t

)
(3.3)
= γ · σ∞(t) ∈ R . (3.18)

because of (3.15). Again by (3.15) and the fact that A is a positive definite
matrix the second summand is

1

2
lim
T→∞

σ(t, T ) ·Aσ(t, T )

T − t
=

{
∞ if A 6= 0,
0 if A = 0.

(3.19)

Now, we examine the third and fourth summand according to the different cases
and define the following sets:

At,T :=
{
x ∈ Rd | ‖x‖ > 1, σ(t, T ) · x < 0

}
,

Bt,T :=
{
x ∈ Rd | ‖x‖ > 1, σ(t, T ) · x ≥ 0

}
.

Then, the third summand of the representation of the long-term drift (3.14) can
be written as follows

lim
T→∞

1

T − t

∫
{‖x‖>1}

(
eσ(t,T )·x − 1

)
ν(dx)

= lim
T→∞

1

T − t

(∫
At,T

(
eσ(t,T )·x − 1

)
ν(dx) +

∫
Bt,T

(
eσ(t,T )·x − 1

)
ν(dx)

)
.

For all x ∈ At,T
−1 ≤ eσ(t,T )·x − 1 ≤ 0

and hence for all x ∈ At,T

−
ν
(
At,T

)
T − t

≤ 1

T − t

∫
At,T

(
eσ(t,T )·x − 1

)
ν(dx) ≤ 0 .

12



Since At,T ⊆ {‖x‖ > 1} and ν is a Lévy measure we have that

ν({‖x‖ > 1}) <∞,

hence

lim
T→∞

1

T − t

∫
At,T

(
eσ(t,T )·x − 1

)
ν(dx) = 0 . (3.20)

Then, we can apply Fatou’s Lemma for
{
x ∈ Rd+ | ‖x‖ > 1

}
due to the fact that

for x ∈ Rd+
1

T − t

(
eσ(t,T )·x − 1

)
≥ 1

T − t
(σ(t, T ) · x) ≥ 0 .

Since
{
x ∈ Rd+ | ‖x‖ > 1

}
⊆ Bt,T , we get:

lim
T→∞

1

T − t

∫
Bt,T

(
eσ(t,T )·x − 1

)
ν(dx)

≥ lim
T→∞

1

T − t

∫
{x∈Rd+ | ‖x‖>1}

(
eσ(t,T )·x − 1

)
ν(dx)

Fatou
≥

∫
{x∈Rd+ | ‖x‖>1}

lim inf
T→∞

1

T − t

(
eσ(t,T )·x − 1

)
ν(dx)

= ∞ (3.21)

because of (3.16) and the fact that ν
({
x ∈ Rd+ | ‖x‖ > 1

})
> 0. For the last

summand it is sufficient to note that:

lim
T→∞

1

T − t

∫
{‖x‖≤1}

(
eσ(t,T )·x − 1− σ(t, T ) · x

)
ν(dx) ≥ 0 . (3.22)

To (i): Let X be a Lévy process with only positive or both positive and negative
jumps. Then we get µ∞(t) ≡ ∞ by (3.18), (3.19), (3.20), (3.21), and (3.22).
To (ii): Let X be a Lévy process with only negative jumps and paths of infinite
variation, i.e A 6= 0 or

∫
{‖x‖≤1} ‖x‖ ν(dx) = ∞ (see Proposition 3 of [6]). If

A 6= 0, then µ∞(t) ≡ ∞ because of (3.19) and since all other terms are non-
negative. If A = 0, then

∫
{‖x‖≤1} ‖x‖ ν(dx) = ∞, since X has paths of infinite

variation. In this case, we notice that inequality (3.22) still holds in the case of
a Lévy process with only negative jumps and we can apply Fatou’s Lemma for
the fourth summand of equation (3.14) to get:

lim
T→∞

∫
{‖x‖≤1,x∈Rd−}

1

T − t

(
eσ(t,T )·x − 1− σ(t, T ) · x

)
ν(dx)

Fatou
≥

∫
{‖x‖≤1,x∈Rd−}

lim inf
T→∞

1

T − t

(
eσ(t,T )·x − 1− σ(t, T ) · x

)
ν(dx)

= −σ∞(t) ·
∫
{‖x‖≤1,x∈Rd−}

x ν(dx) =∞

because of (3.17). Since all other terms are non-negative, this implies µ∞(t) ≡
∞.
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To (iii): Let X be a Lévy process with only negative jumps and paths of finite
variation, i.e. A = 0 and

∫
{‖x‖≤1} ‖x‖ ν(dx) < ∞ (see Proposition 3 of [6]).

Due to the finite variation paths, the process X can be written as follows:

Xt = γ∗t+

∫
xNt(·, dx)

with γ∗ := γ −
∫
{‖x‖≤1} x ν(dx).

Using Corollary 3.1 of [3] and the fact that we consider only negative jumps,
i.e. ν

(
Rd\Rd−

)
= 0, we get:

µ∞(t) = γ∗ · σ∞(t) + lim
T→∞

1

T − t

∫
Rd−

(
eσ(t,T )·x − 1

)
ν(dx) ,

whereas γ∗ ·σ∞(t) ∈ R because of (3.15) and the fact that X has paths of finite
variation. We know that for all x ∈ Rd− and t, T ≥ 0

−1 ≤ eσ(t,T )·x − 1 ≤ 0 (3.23)

and therefore

−
ν
({
x ∈ Rd− | ‖x‖ > 1

})
T − t

≤
∫
{x∈Rd− | ‖x‖>1}

eσ(t,T )·x − 1

T − t
ν(dx) ≤ 0 .

Since ν
({
x ∈ Rd− | ‖x‖ > 1

})
<∞, we get

lim
T→∞

1

T − t

∫
{x∈Rd− | ‖x‖>1}

(
eσ(t,T )·x − 1

)
ν(dx) = 0 . (3.24)

Next, according to (3.23), we conclude that

lim
T→∞

1

T − t

∫
{x∈Rd− | ‖x‖≤1}

(
eσ(t,T )·x − 1

)
ν(dx) ≤ 0 . (3.25)

Since exp(y) ≥ 1 + y for all y ∈ Rd, it follows for all t, T ≥ 0 that

σ (t, T )

T − t
·
∫
{x∈Rd− | ‖x‖≤1}

x ν(dx) ≤
∫
{x∈Rd− | ‖x‖≤1}

eσ(t,T )·x − 1

T − t
ν(dx) . (3.26)

Since X has paths of finite variation, we have

−∞ <

∫
{x∈Rd− | ‖x‖≤1}

x ν(dx) ≤ 0 ,

and then because of (3.15) it follows for all t ≥ 0

−∞ < σ∞(t) ·
∫
{x∈Rd− | ‖x‖≤1}

x ν(dx) ≤ 0 . (3.27)

Putting together (3.25), (3.26), and (3.27), we conclude

lim
T→∞

1

T − t

∫
{x∈Rd− | ‖x‖≤1}

(
eσ(t,T )x − 1

)
ν(dx) ∈ R− . (3.28)
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In the end, by using (3.24) and (3.28) we get

lim
T→∞

1

T − t

∫
Rd−

(
eσ(t,T )x − 1

)
ν(dx) ∈ R− . (3.29)

Considering the special case of a finite activity Lévy process, i.e. ν
(
Rd
)
< ∞

(see Proposition 2 of [6]), with finite variation , we even get

lim
T→∞

1

T − t

∫
Rd−

(
eσ(t,T )x − 1

)
ν(dx) = 0 (3.30)

because of ν
(
Rd−
)
<∞ and

−
ν
(
Rd−
)

T − t
≤ 1

T − t

∫
Rd−

(
eσ(t,T )x − 1

)
ν (dx) ≤ 0

due to the fact that exp(y) ≥ 1 + y for all y ∈ Rd. Using (3.29), (3.30), and
γ∗ · σ∞ (t) ∈ R we conclude that µ∞ (t) ∈ R for all t ≥ 0.

To summarise, we have showed in this section that the long-term volatility
process always vanishes except in the case of a finite variation Lévy process
with only negative jumps.

3.2 Long-Term Yield as Non-Decreasing Process

A well-known fact of interest rate modelling is that if the market is arbitrage-
free, the long-term yields, as well as the long-term forward rates, can never fall.
This statement was first shown in 1996 by Dybvig et al. [5] and therefore is
commonly referred to as Dybvig-Ingersoll-Ross Theorem (DIR-Theorem). Fol-
lowing [5], several researchers took a deeper look into this topic and further
results were achieved. First, [24] clarified some aspects of the original proof,
then a generalisation of the proof of the DIR-Theorem in an elegant mathemat-
ical way, where no additional assumptions to an arbitrage-free market have to
be stated, was provided in [17]. Recently, further generalisations on the DIR-
Theorem have been shown in [14] and [18]. Furthermore, in [18] the maximal
discrepancy between Y (s, T ) and Y (t, T ) for a long-term, but finite, maturity
T is discussed.

We remark that the result that the long-term yield is a non-decreasing pro-
cess does not depend on the assumptions of a frictionless bond market where
all bonds have final payoff P (T, T ) = 1. In reality, the two conditions are
not always satisfied: zero-coupon bonds are not traded for all maturities, and
P (T, T ) might be less than one if the issuer of the T -bond defaults. Yet, an
alteration of these conditions would not have any influence on the validity of
the DIR-Theorem.

We now see that a non-decreasing long-term yield does not contradict the
realistic behaviour of the bond price process. It follows from the assumption of
(`t)t≥0 being a non-decreasing process that for all t ≤ s we have `s ≥ `t. This
implies that there exists M > 0 such that for all T > M

Y (s, T ) ≥ Y (t, T ) ,
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i.e.
P (s, T ) ≤ P (t, T )

T−s
T−t .

For s > t, we have that 0 ≤ T−s
T−t < 1 and this leads to the statement that there

exists M > 0 such that for all T > M

P (s, T ) ≤ P (t, T )
a(t,s,T )

with a(t, s, T ) ∈ [0, 1) for all 0 ≤ t < s ≤ T . This is economically realistic
because the fluctuations of the bond price will decrease if the time to maturity
decreases. Furthermore for a maturity that is far away from the time of obser-
vation, it is comprehensible that the bond price P (s, T ) is always lower or equal

than P (t, T )
a(t,s,T )

for s > t because any incident that could occur between
the times t and s only has minor effects on long-term observations and can be
captured in a(t, s, T ).

3.3 Asymptotic Behaviour of the Long-Term Rate

In Section 3.1 we have seen that if 0 < ‖σ∞ (t)‖ < ∞, then µ∞(t) is infinite,
except in the case when X is a finite variation Lévy process with only negative
jumps. Here, we investigate the asymptotic behaviour of the long-term rate µ∞
if σ∞(t) = 0 for all t ∈ R+.

Proposition 3.7. Let σ(t, T ) ∈ O(1), i.e. σi(t, T ) ∈ O(1) for all i ∈ {1, . . . , d},
for every t ≥ 0. Under Assumption I we get

µ∞(t) = 0

and therefore (`t)t≥0 is constant.

Proof. Let t ≥ 0 and σ(t, T ) ∈ O(1), then σi(t, T ) ≤ c for T big enough for all
i ∈ {1, . . . , d}. Therefore ‖σ∞(t)‖ = 0. In (3.14) we obtain

γ · σ∞(t) = 0 (3.31)

and

0 ≤ 1

2
lim
T→∞

σ(t, T ) ·Aσ(t, T )

T − t
≤ 1

2
~c ·A~c︸ ︷︷ ︸
<∞

lim
T→∞

1

T − t
= 0 . (3.32)

Due to Assumption (A5) the moment-generating function of X1 with parameter
σ is well-defined, hence for all t, T ∈ R+:∫

Rd

(
eσ(t,T )·x − 1− σ(t, T ) · x1{‖x‖≤1}

)
ν(dx) <∞. (3.33)

This inequality even holds for t, T ∈ R̄+ because of σ(t, T ) ∈ O(1). Then, we
put together the third and fourth summand of equation (3.14) and get with
(3.33):

lim
T→∞

1

T − t

∫
Rd

(
eσ(t,T )·x − 1− σ (t, T ) · x 1{‖x‖≤1}

)
ν(dx) = 0 . (3.34)

By (3.31), (3.32) and (3.34) it follows µ∞(t) = 0 for all t ≥ 0.
This yields `t = `0 for all t ≥ 0 following (3.1) and (3.4), i.e. (`t)t≥0 is constant.
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Proposition 3.8. Let t ≥ 0. If µ∞(t) <∞, then σ(t, T ) ∈ O(log(T − t)) under
Assumption I. In this case µ∞(t) ≥ 0.

Proof. Let t ≥ 0. First, we want to check which convergence behaviour of the
volatility function is necessary to guarantee that µ∞(t) 6= ∞ holds. In (3.14)
we need to have

γ · σ∞(t) <∞,

i.e. σi∞(t) = lim
T→∞

σi(t,T )
T−t <∞ for all i ∈ {1, . . . , d} and therefore:

∀ i ∈ {1, . . . , d} : σi(t, T ) ∈ O(T − t) . (3.35)

Next, the second summand needs to be

1

2
lim
T→∞

σ(t, T ) ·Aσ(t, T )

T − t
<∞,

hence
∀ i ∈ {1, . . . , d} : σi(t, T ) ∈ O

(√
T − t

)
. (3.36)

Furthermore the following inequality has to be satisfied:

lim
T→∞

1

T − t

∫
Rd

(
eσ(t,T )·x − 1− σ(t, T ) · x1{‖x‖≤1}

)
ν(dx) <∞. (3.37)

For inequality (3.37) to hold, it is sufficient that

lim
T→∞

1

T − t

(
eσ(t,T )·x − 1− σ(t, T ) · x1{‖x‖≤1}

)
<∞ (3.38)

by Fatou’s Lemma. Let Ct,T and Dt,T defined as

Ct,T :=
{
x ∈ Rd |σ(t, T ) · x < 0

}
and

Dt,T :=
{
x ∈ Rd |σ(t, T ) · x ≥ 0

}
,

i.e.
Ct,T ∪Dt,T = Rd.

We see that for x ∈ Ct,T inequality (3.38) is equal to

lim
T→∞

1

T − t
(
−σ(t, T ) · x1{‖x‖≤1}

)
= −σ∞(t) · x1{‖x‖≤1} <∞ ,

and it follows again condition (3.35).
Furthermore, for x ∈ Dt,T inequality (3.38) leads to

lim
T→∞

1

T − t
eσ(t,T )·x <∞

or equivalently for all i ∈ {1, . . . , d} that lim
T→∞

1
T−te

σi(t,T ) xi < ∞ . Hence we

must have
∀ i ∈ {1, . . . , d} : σi(t, T ) ∈ O(log(T − t)) . (3.39)
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By regarding (3.35), (3.36), and (3.39) it follows that the condition µ∞(t) <∞
implies σ(t, T ) ∈ O(log(T − t)).
In particular if σ(t, T ) ∈ O(log(T − t)), then µ∞(t) ≥ 0 since ‖σ∞(t)‖ = 0 and

lim
T→∞

1

T − t

∫
Rd

(
eσ(t,T )·x − 1− σ(t, T ) · x1{‖x‖≤1}

)
ν(dx) ≥ 0 .

Corollary 3.9. Let t ≥ 0. If 0 < µ∞(t) < ∞, then under Assumption I,
σ(t, T ) is asymptotically lower bounded and belongs to O(log(T − t)).

Proof. This follows by Proposition 3.7 and Proposition 3.8.

We summarise the results in the following table.

Long-term
drift

Long-term
volatility

Long-term
yield

Volatility curve Lévy process

µ∞(·) =∞ 0 < ‖σ∞(·)‖ <∞ infinite σ(t, T ) ∼ O(T − t) Only positive
jumps

µ∞(·) =∞ 0 < ‖σ∞(·)‖ <∞ infinite σ(t, T ) ∼ O(T − t) Positive and
negative jumps

µ∞(·) ∈ R 0 < ‖σ∞(·)‖ <∞ non-
decreasing

σ(t, T ) ∼ O(T − t) Finite variation
and only nega-
tive jumps

µ∞(·) =∞ 0 < ‖σ∞(·)‖ <∞ infinite σ(t, T ) ∼ O(T − t) Infinite varia-
tion and only
negative jumps

µ∞(·) =∞ ‖σ∞(·)‖ = 0 infinite σ(t, T ) ∼ O
(√
T − t

)
Positive and
negative jumps

µ∞(·) = 0 ‖σ∞(·)‖ = 0 constant σ(t, T ) ∼ O(1) Positive and
negative jumps

µ∞(·) ∈ R+ ‖σ∞(·)‖ = 0 non-
decreasing

σ(t, T ) ∼ O(log(T − t)) Positive and
negative jumps

4 Jump-diffusion Processes as Random Driver

4.1 Jump Distributions

In this section we want to find out some possible jump size distributions fitting
to our model using a jump-diffusion Lévy process, such that the long-term
yield is a non-decreasing process which is not equal to infinity. We consider
a 1-dimensional Lévy process X := (Xt)t≥0 of jump-diffusion type with the
following form:

Xt = γt+ aWt + Zt , (4.1)

γ ∈ R, a ∈ R+. Here W := (Wt)t≥0 is a 1-dimensional Brownian motion and
Z := (Zt)t≥0 is a compound Poisson process given by

Zt =

Nt∑
i=1

Yi ,

where N := (Nt)t≥0 is a Poisson process and Yi, i ≥ 1, are i.i.d. random vari-
ables. Then the Lévy measure ν is finite (see Chapter I, Section 4, Example 2 of
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[25]), i.e. ν(R) <∞ and in particular ν(R) = λ > 0, where λ denotes the jump
arrival intensity of the Poisson process N (see Chapter I, Section 3, Theorem 23
of [25]). To define the parametric model completely, the distribution of the jump
sizes has to be specified and we have to find out if (A5) of Assumption I can hold
for the respective jump size distribution. All other statements of Assumption I
are only dependent on the volatility function.

To fulfil (A5), according to Proposition 3.4 of [3] equation (3.2.13) of [28]
and (4.1), we have to show that there exists a function ψ ∈ L1 (R+) such that

mσ(t, T ) |γ|
T

+
m2 σ(t, T )

2
a2

2T
+
λ

T

∣∣∣∣∫
R

(
emσ(t,T ) x − 1

)
f(dx)

∣∣∣∣ ≤ ψ(t) (4.2)

for all T > 0, 0 ≤ t ≤ T and m := 1 + ε with 0 < ε < 1. The density function
of the jump size distribution is denoted by f .

Remark. Note that not every distribution is eligible as jump distribution. For
example the normal distribution, the gamma distribution and the continuous
uniform distribution are possible jump distributions because with the right choice
of volatility function they can fulfil inequality (4.2). At the same time, the
exponential distribution, the Laplace distribution and the generalised hyperbolic
distribution are examples of distributions that cannot fulfil inequality (4.2) unless
the chosen volatility function is bounded.

4.2 Example

Let us consider a compound Poisson process where the jumps are Gaussian
distributed with Y ∼ N

(
0, η2

)
and η > 0. In this case the probability of a

positive jump is equal to the probability of a negative jump, i.e. P(Y ≥ 0) =
P(Y ≤ 0) = 1

2 . The density of Y is

f(x) =
1√
2πη

exp

(
− x2

2η2

)
. (4.3)

We know from Proposition 3.4 of [3] that the characteristic function of the
compound Poisson process Z is

E
[
eiuZt

]
= etφ(u), u ∈ R,

with

φ(u) =

∫
R

(
eiux − 1

)
ν(dx) , u ∈ R.

Therefore the long-term drift (3.14) for t ≥ 0 has the following form:

µ∞(t) = lim
T→∞

(
γ
σ(t, T )

T − t
+
a2σ(t, T )

2

2 (T − t)
+

∫
R

eσ(t,T )x − 1

T − t
ν(dx)

)
.

Let us take a closer look at the third summand:

lim
T→∞

1

T−t

∫
R

(
eσ(t,T )x−1

)
ν(dx) = lim

T→∞

λ√
2πη (T−t)

∫
R

(
eσ(t,T )x−1

)
e
− x2

2η2 dx

= λ lim
T→∞

e
σ(t,T )2η2

2

T − t
. (4.4)
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We consider the following volatility function:

σ(t, T ) =

{
c
√

log (T − t+ 1) if t ≤ T − δ
0 if t > T − δ (4.5)

with c ∈ R+ and δ > 0 small enough. Then σ(t, T ) ∈ O(log(T − t)) and σ(t, T )
is asymptotically lower bounded according to Corollary 3.9, for t ≤ T − δ. We
get

σ∞(t)
(3.3)
= c lim

T→∞

√
log (T − t+ 1)

T − t
= 0, t ∈ R+ .

Hence

µ∞(t)
(4.4)
= λ lim

T→∞

(T − t+ 1)
1/2 c2η2

T − t
=

 ∞ if 1/2 c2δ2 > 1,
λ if 1/2 c2η2 = 1,
0 if 1/2 c2η2 < 1.

(4.6)

In the case of 1
2 c

2η2 = 1 the long-term yield has the following representation:

`t
(3.10)

= `0 + λt , λ > 0.

Remark. Result (4.6) shows that the condition

σ(t, T ) ∈ O(log(T − t))

is necessary, but it may be not sufficient to have µ∞(t) <∞ for all t ≥ 0.

We now set 1
2 c

2δ2 = 1 and check that the chosen volatility function (4.5) fulfils
all prerequisites due to Assumption I.
Assumptions (A1) and (A2) are obviously fulfilled.
Next, σ is a continuous function in both variables, therefore càglàd. Further,
the partial derivatives

σ1(t, T ) =

{
− c

2
√

log(T−t+1)(T−t+1)
if t ≤ T − δ ,

0 if t > T − δ ,

and

σ2(t, T ) =

{
c

2
√

log(T−t+1)(T−t+1)
if t ≤ T − δ ,

0 if t > T − δ ,

with δ > 0 very small, are càglàd in both variables, hence (A3) holds.
To show (A4) we define

G(t, T ) :=
σ (t, T )

T
.

Then

∂

∂t
G(t, T ) = − c

2T
√

log(T−t+1) (T−t+1)
for t ∈ [0, T − δ] ,

i.e. ∂
∂tG(t, T ) < 0 , for all 0 ≤ t ≤ T − δ and T > 0, hence G is a decreasing

function in t with maximum for t = 0. One can easily see that lim
T→∞

G(0, T ) = 0

and G(0, T ) is bounded for T ≥ 1. Therefore for all T ≥ 1 there exists φ ∈
L1(R+) such that G(t, T ) ≤ φ(t) for all 0 ≤ t ≤ T .
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It remains to verify (A5), i.e. we have to find a function ψ ∈ L1(R+) such that
(4.2) holds. With density function (4.3), 0 < ε < 1, m = 1 + ε, 0 ≤ t ≤ T − δ,
and T > 0, we get:

mσ(t, T ) |γ|
T

+
m2 σ(t, T )

2
a2

2T
+
λ

T

∣∣∣∣∫
R

(
emσ(t,T )x − 1

)
f(dx)

∣∣∣∣
=
mσ(t, T ) |γ|

T
+
m2 σ(t, T )

2
a2

2T
+
λ

T

∣∣∣∣exp

(
1

2
σ(t, T )

2
η2

)
− 1

∣∣∣∣
≤ mσ(t, T ) |γ|

T
+
m2 σ(t, T )

2
a2

2T
+
λ

T
exp

(
1

2
σ(t, T )

2
η2

)
=
mc |γ|

√
log(T−t+1)

T
+
m2 c2 a2 log(T−t+1)

2T
+
λ (T−t+ 1)

T
=: H(t, T ) .

Then

∂

∂t
H(t, T ) = − mc |γ|

2T
√

log(T−t+1) (T−t+1)
− m2c2a2

2T (T − t+ 1)
− λ

T
,

i.e. ∂
∂tH(t, T ) < 0 for all 0 ≤ t ≤ T − δ and T > 0, hence H is a decreasing

function in t with maximum for t = 0. For T ≥ 1 it is easy to find a dominating
function ψ ∈ L1(R+) of H since

mc |γ|
√

log(T−t+1)

T
+
m2 c2 a2 log(T−t+1)

2T
+
λ (T−t+1)

T

≤ 3

(
mc |γ|+ 1

2
m2 c2 a2 + λ

)
. (4.7)

Furthermore, we can find ψ ∈ L1(R+) satisfying (A5) for all T > 0, by consider-
ing two intervals, for instance [0, 1) and [1,∞). For t ∈ [1,∞) it follows T ≥ 1
and we just have seen in (4.7) that a dominating h ∈ L1(R+) exists. If t ∈ [0, 1)
we can show with lengthy computations that

mc |γ|
√

log(T−t+1)

T
+
m2 c2 a2 log(T−t+1)

2T
+
λ (T−t+1)

T

≤ g(t)

(
mc |γ|+ 1

2
m2 c2 a2 + λ

)
,

where for all 0 ≤ t < 1

g(t) :=
6

(1 + t+ δ) log(1 + t+ δ)

with δ > 0 very small. Further, g ∈ L1([0, 1]) because∫ 1

0

1

(1+t+δ) log(1+t+δ)
dt = log(log(2+δ))− log(log(1+δ)) <∞ .

In the end we have ψ ∈ L1(R+) satisfying (2.4) with

ψ(t) := k
(
g(t) 1[0,1) (t) +G(t) 1[1,∞)(t)

)
,

where

k := mc |γ|+ 1

2
m2 c2 a2 + λ .
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