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Abstract. In this paper we aim at generalizing the results of A. K. Zvonkin [41]
and A. Y. Veretennikov [39] on the construction of unique strong solutions of sto-
chastic differential equations with singular drift vector field and additive noise in the
Euclidean space to the case of infinite-dimensional state spaces. The regularizing
driving noise in our equation is chosen to be a locally non-Hölder continuous Hilbert
space valued process of fractal nature, which does not allow for the use of classical
construction techniques for strong solutions from PDE or semimartingale theory. Our
approach, which does not resort to the Yamada-Watanabe principle for the verifica-
tion of pathwise uniqueness of solutions, is based on Malliavin calculus.
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1. Introduction

The main objective of this paper is the construction of (unique) strong solutions
of infinite-dimensional stochastic differential equations (SDEs) with a singular drift
and additive noise. In fact, we want to derive our results from the perspective
of a rather recently established theory of stochastic regularization (see [19] and
the references therein) with respect to a new general method based on Malliavin
calculus and another variational technique which can be applied to different types
of SDEs and stochastic partial differential equations (SPDEs).

In order to explain the concept of stochastic regularization, let us consider the
first-order ordinary differential equation (ODE)

d

dt
Xx
t = b(t,Xx

t ), X0 = x ∈ H, t ∈ [0, T ] (1)
for a vector field b : [0, T ] × H → H, where H is a separable Hilbert space with
norm ‖·‖H.

Using Picard iteration, it is fairly straight forward to see that the ODE (1) has
a unique (global) solution (Xx

t )t∈[0,T ], if the driving vector field b satisfies a linear
growth and Lipschitz condition, that is

‖b(t, x)‖H ≤ C1(1 + ‖x‖H)
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and
‖b(t, x)− b(t, y)‖H ≤ C2 ‖x− y‖H

for all t, x and y with constants C1, C2 <∞.
However, well-posedness in the sense of existence and uniqueness of solutions

may fail, if the vector field b lacks regularity, that is if e.g. b is not Lipschitz
continuous. In this case, the ODE (1) may not even admit the existence of a
solution in the case H = Rd.

On the other hand, the situation changes, if one integrates on both sides of the
ODE (1) and adds a "regularizing" noise to the right hand side of the resulting
integral equation.

More precisely, if H = Rd, well-posedness of the ODE (1) can be restored via
regularization by a Brownian (additive) noise, that is by a perturbation of the
ODE (1) given by the SDE

dXx
t = b(t,Xx

t )dt+ εdBt, t ∈ [0, T ], Xx
0 = x ∈ Rd, (2)

where (Bt)t∈[0,T ] is a Brownian motion in Rd and ε > 0.
If the vector field b is merely bounded and measurable, it turns out that the SDE

(2) – regardless how small ε is – possesses a unique (global) strong solution, that is
a solution (Xx

t )t∈[0,T ], which as a process is a measurable functional of the driving
noise (Bt)t∈[0,T ]. This surprising and remarkable result was first obtained by A.
K. Zvonkin [41] in the one-dimensional case, whose proof, using PDE techniques,
is based on a transformation ("Zvonkin-transformation"), that converts the SDE
(2) into a SDE without drift part. Subsequently, this result was generalized by
A. Y. Veretennikov [39] to the multi-dimensional case. Much later, that is 35
years later, Zvonkin’s and Veretennikov’s results were extended by G. Da Prato,
F. Flandoli, E. Priola and M. Röckner [13] to the infinite-dimensional setting by
using estimates of solutions of Kolmogorov’s equation on Hilbert spaces. In fact,
the latter authors study mild solutions (Xt)t∈[0,T ] to the SDE

dXt = AXtdt+ b(Xt)dt+
√
QdWt, t ∈ [0, T ], X0 = x ∈ H,

where (Wt)t∈[0,T ] is a cylindrical Brownian motion on H, A : D(A) → H a neg-
ative self-adjoint operator with compact resolvent, Q : H → H a non-negative
definite self-adjoint bounded operator and b : H → H. Here, the authors prove
for b ∈ L∞(H;H) under certain conditions on A and Q the existence of a unique
mild solution, which is adapted to a completed filtration generated by (Wt)t∈[0,T ].
So restoration of well-posedness of the ODE (1) with a singular vector field is es-
tablished via regularization by both the cylindrical Brownian noise (Wt)t∈[0,T ] and
A, which cannot be chosen to be the zero operator.

Other works in this direction in the infinite-dimensional setting based on differ-
ent methods are e.g. A. S. Sznitman [38], A. Y. Pilipenko, M. V. Tantsyura [36]
in connection with systems of McKean-Vlasov equations and G. Ritter, G. Leha
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[25] in the case of discontinuous drift vector fields of a rather specific form. We
also refer to the references therein.

In this article, we aim at restoring well-posedness of singular ODE’s by using a
certain non-Hölder continuous additive noise of fractal nature. More specifically,
we want to analyze solutions to the following type of SDE:

Xx
t = x+

∫ t

0
b(t,Xx

s )ds+ Bt, t ∈ [0, T ], (3)

where the H−valued regularizing noise (Bt)t∈[0,T ] is a stationary Gaussian process
with locally non-Hölder continuous paths given by

Bt =
∑
k≥1

λkB
Hk
t ek.

Here {λk}k≥1 ⊂ R, {ek}k≥1 is an orthonormal basis of H and {BHk
· }k≥1 are in-

dependent one-dimensional fractional Brownian motions with Hurst parameters
Hk ∈ (0, 1

2), k ≥ 1, such that
Hk ↘ 0

for k →∞.
Under certain (rather mild) growth conditions on the Fourier components bk,

k ≥ 1, of the singular vector field b : [0, T ]×H → H (see (22) and (23)), which do
not necessarily require that all bk are equal (compare e.g. to [38]), we show in this
paper the existence of a unique (global) strong solution to the SDE (3) driven by
the non-Markovian process (Bt)t∈[0,T ].

Our approach for the construction of strong solutions to (3) relies on Malli-
avin calculus (see e.g. D. Nualart [32]) and another variational technique, which
involves the use of spatial regularity of local time of finite-dimensional approx-
imations of Bt. In contrast to the above mentioned works (and most of other
related works in the literature), the method in this paper is not based on PDE,
Markov or semimartingale techniques. Furthermore, our technique corresponds
to a construction principle, which is diametrically opposed to the commonly used
Yamada-Watanabe principle (see e.g. [40]): Using the Yamada-Watanabe prin-
ciple, one combines the existence of a weak solution to a SDE with pathwise
uniqueness to obtain strong uniqueness of solutions. So

Weak existence + Pathwise uniqueness ⇒ Strong uniqueness .

This tool is in fact used by many authors in the literature. See e.g. the above
mentioned authors or I. Gyöngy, T. Martinez [22], I. Gyöngy, N. V. Krylov [21],
N. V. Krylov, M. Röckner [24] or S. Fang, T. S. Zhang [18], just to mention a few.

However, using our approach, verification of the existence of a strong solution,
which is unique in law, provides strong uniqueness:
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Strong existence + Uniqueness in law ⇒ Strong uniqueness .
See also H. J. Engelbert [17] in the finite-dimensional Brownian case regarding the
latter construction principle.

In order to briefly explain our method in the case of time-homogeneous vector
fields, we mention that we apply an infinite-dimensional generalization of a com-
pactness criterion for square integrable Brownian functionals in L2(Ω), which is
originally due to G. Da Prato, P. Malliavin, and D. Nualart [14], to a double-
sequence of strong solutions {(Xd,ε

t )t∈[0,T ]}d≥1,ε>0 associated with the following
SDE’s

Xd,ε
t = x+

∫ t

0
bd,ε(Xd,ε

s )ds+ Bt, t ∈ [0, T ]. (4)

Here {bd,ε}d∈N,ε>0 is an approximating double-sequence of vector fields of the sin-
gular drift b, which are smooth and live on d−dimensional subspaces of H.

The application of the above mentioned compactness criterion (for each fixed
t), however, requires certain (uniform) estimates with respect to the Malliavin
derivative Dt of Xd,ε

t in the direction of a cylindrical Brownian motion. For this
purpose, the Malliavin derivative D· : D1,2(H) −→ L2([0, T ] × Ω) ⊗ LHS(H,H)
(D1,2(H) is the space of H−valued Malliavin differentiable random variables and
LHS(H,H) is the space of Hilbert-Schmidt operators from H to H) in connection
with a chain rule is applied to both sides of (4) and one obtains the following linear
equation:

DsX
d,ε
t =

∫ t

s

(
bd,ε

)′
(Xd,ε

u )DsX
d,ε
u du+

∑
n≥1

λnKHn(t, s) 〈en, ·〉H en, s < t, (5)

where
(
bd,ε

)′
is the derivative of bd,ε, 〈·, ·〉H the inner product and KH a certain

kernel function defined for Hurst parameters Hn ∈ (0, 1
2).

We remark here that this type of linearization based on a stochastic derivative
Dt actually corresponds to the Nash-Moser principle, which is used for the con-
struction of solutions of (non-linear) PDE’s by means of linearization of equations
via classical derivatives. See e.g. J. Moser [31].

In a next step we then can derive a representation of DsX
d,ε
t (under a Girsanov

change of measure) in (5) which is not based on derivatives of bd,ε by using Picard
iteration and the following variational argument:∫

t<s1<...<sn<u
κ(s)Dαf(Bds)ds =

∫
Rdn

Dαf(z)Lnκ(t, z)dz

= (−1)|α|
∫
Rdn

f(z)DαLnκ(t, z)dz,

where Bds := (BH1
s1 , ..., B

Hd
s1 , ..., B

H1
sn , ..., B

Hd
sn ) and f : Rdn −→ R is a smooth function

with compact support. Here Dα stands for a partial derivative of order |α| with
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respect a multi-index α. Further, Lnκ(t, z) is a spatially differentiable local time of
Bd· on a simplex scaled by non-negative integrable function κ(s) = κ1(s)...κn(s).

Then, using the latter we can verify the required estimates for the Malliavin
derivative of the approximating solutions in connection with the above mentioned
compactness criterion and we finally obtain (under some additional arguments)
that for each fixed t

Xd,ε
t −→ Xt in L2(Ω)

for ε↘ 0, d −→∞, where (Xt)t∈[0,T ] is the unique strong solution to (3).

Finally, let us also mention a series of papers, from which our construction
method gradually evolved: We refer to the works [27], [28], [29], [30] in the case
of finite-dimensional Brownian noise. See [20] in the Hilbert space setting in con-
nection with Hölder continuous drift vector fields. In the case of SDEs driven by
Lévy processes we mention [23]. Other results can be found in [6], [1] with respect
to SDEs driven by fractional Brownian motion and related noise. See also [7] in
the case of "skew fractional Brownian motion", [5] with respect to singular delay
equations and [8] in the case of Brownian motion driven mean-field equations.

We shall also point to the work of R. Catellier and M. Gubinelli [11], who
prove existence and path by path uniqueness (in the sense of A. M. Davie [15])
of strong solutions of fractional Brownian motion driven SDEs with respect to
(distributional) drift vector fields belonging to the Besov-Hölder space Bα

∞,∞, α ∈
R. The approach of the authors is based inter alia on the theorem of Arzela-
Ascoli and a comparison principle based on an average translation operator. In
the distributional case, that is α < 0, the drift part of the SDE is given by a
generalized non-linear Young integral defined via the topology of Bα

∞,∞. See also
D. Nualart, Y. Ouknine [33] in the one-dimensional case.

The structure of our article is as follows: In Section 2 we introduce the mathe-
matical framework of this paper. Further, in Section 3 we discuss some properties
of the process B· and weak solutions of the SDE (3). Section 4 is devoted to
the construction of unique strong solutions to the SDE (3). Finally, in Section 5
examples of singular vector fields for which strong solutions exist are given.

Notation. For the sake of readability we assume throughout the paper that 1 ≤
T <∞ is a finite time horizon. We defineH to be an infinite-dimensional separable
real-valued Hilbert space with scalar product 〈·, ·〉H and orthonormal basis {ek}k≥1.
Denote by ‖ · ‖H the induced norm on H defined by ‖x‖H := 〈x, x〉

1
2
H, x ∈ H. For

every x ∈ H and k ≥ 1 we denote by x(k) := 〈x, ek〉H the projection onto the
subspace spanned by ek, k ≥ 1. Loosely speaking we are referring to the subspace
spanned by ek, k ≥ 1, as the k-th dimension. In line with this notation we
denote the projection of the SDE (3) on the subspace spanned by ek, k ≥ 1, by
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X(k) := 〈X, ek〉H. Moreover we can write the SDE (3) as an infinite dimensional
system of real-valued stochastic differential equations, namely

X
(k)
t = x(k) +

∫ t

0
bk(s,Xs)ds+ B(k)

t , t ∈ [0, T ], k ≥ 1,

where bk and B(k) are the projections on the subspace spanned by ek, k ≥ 1, of
b and B, respectively. Note here that the function bk : [0, T ] × H → R has still
domain [0, T ] × H. Furthermore, we define the truncation operator πd, d ≥ 1,
which maps an element x ∈ H onto the first d dimensions, by

πdx :=
d∑

k=1
x(k)ek. (6)

The truncated space πdH is denoted by Hd. We define the change of basis operator
τ : H → `2 by

τx = τ
∑
k≥1

x(k)ek =
∑
k≥1

x(k)ẽk, (7)

where {ẽk}k≥1 is an orthonormal basis of `2. It is easily seen that the operator τ
is a bijection and we denote its inverse by τ−1 : `2 → H.

Further frequently used notation:
• Let (X ,A, µ) denote a measurable space and (Y , ‖ · ‖Y) a normed space.
Then L2(X ;Y) denotes the space of square integrable functions X over X
taking values in Y and is endowed with the norm

‖X‖2
L2(X ;Y) =

∫
X
‖X(ω)‖2

Yµ(dω).

• The space L2(Ω,F) denotes the space of square integrable random variables
on the sample space Ω measurable with respect to the σ-algebra F .
• We define Bx := x+ B.
• For any vector u we denote its transposed by u>.
• We denote by Id the identity operator.
• The Jacobian of a differentiable function is denoted by ∇.
• For any multi-index α of length d and any d-dimensional vector u we define
uα := ∏d

i=1 u
αi
i .

• For two mathematical expressions E1(θ), E2(θ) depending on some parame-
ter θ we write E1(θ) . E2(θ), if there exists a constant C > 0 not depending
on θ such that E1(θ) ≤ CE2(θ).
• Let A be some countable set. Then we denote by #A its cardinality.

2. Preliminaries

2.1. Shuffles. Let m and n be two integers. We denote by S(m,n) the set of
shuffle permutations, i.e. the set of permutations σ : {1, . . . ,m+n} → {1, . . . ,m+
n} such that σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n). Equivalently
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we denote for integers k and n by S(k;n) the set of shuffle permutations of k sets
of size n, i.e. the set of permutations σ : {1, . . . , k · n} → {1, . . . , k · n} such that
σ(m · n + 1) < · · · < σ((m + 1) · n) for all m = 0, . . . , k − 1. Furthermore the
n-dimensional simplex ∆n of the interval (s, t) is defined by

∆n
s,t := {(u1, . . . , un) ∈ [0, T ]n : s < u1 < · · · < un < t}.

Note that the product of two simplices can be written as

∆m
s,t ×∆n

s,t =
⋃

σ∈S(m,n)
{(w1, . . . , wm+n) ∈ [0, T ]m+n : wσ ∈ ∆m+n

s,t } ∪N, (8)

where the set N has Lebesgue measure zero and wσ denotes the shuffled vector
(wσ(1), . . . , wσ(m+n)). For the sake of readability we denote throughout the paper
the integral over the simplex ∆n

s,t of the product of integrable functions fi : [0, T ]→
R, i = 1, . . . , n, by∫

∆n
s,t

n∏
j=1

fj(uj)du :=
∫ t

s

∫ t

u1
· · ·

∫ t

un−1

n∏
j=1

fj(uj)dun · · · du2du1.

Due to (8), we get for integrable functions fi : [0, T ]→ R, i = 1, . . . ,m+ n, that∫
∆m
s,t

m∏
j=1

fj(uj)du
∫

∆n
s,t

m+n∏
j=m+1

fj(uj)du =
∑

σ∈S(m,n)

∫
∆m+n
s,t

m+n∏
j=1

fσ(j)(wj)dw. (9)

For a proof of a more general result we refer the reader to [6, Lemma 2.1].

2.2. Fractional Calculus. In the following we give some basic definitions and
properties on fractional calculus. For more insights on the general theory we refer
the reader to [34] and [37].

Let a, b ∈ R with a < b, f, g ∈ Lp([a, b]) with p ≥ 1 and α > 0. We define the
left- and right-sided Riemann-Liouville fractional integrals by

Iαa+f(x) = 1
Γ(α)

∫ x

a
(x− y)α−1f(y)dy,

and
Iαb−g(x) = 1

Γ(α)

∫ b

x
(y − x)α−1g(y)dy,

for almost all x ∈ [a, b]. Here Γ denotes the gamma function.
Furthermore, for any given integer p ≥ 1, let Iαa+(Lp) and Iαb−(Lp) denote the

images of Lp([a, b]) by the operator Iαa+ and Iαb− , respectively. If 0 < α < 1 as well as
f ∈ Iαa+(Lp) and g ∈ Iαb−(Lp), we define the left- and right-sided Riemann-Liouville
fractional derivatives by

Dα
a+f(x) = 1

Γ(1− α)
d

dx

∫ x

a

f(y)
(x− y)αdy, (10)
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and

Dα
b−g(x) = 1

Γ(1− α)
d

dx

∫ b

x

g(y)
(y − x)αdy, (11)

respectively. The left- and right-sided derivatives of f and g defined in (10) and
(11) admit moreover the representations

Dα
a+f(x) = 1

Γ(1− α)

(
f(x)

(x− a)α + α
∫ x

a

f(x)− f(y)
(x− y)α+1 dy

)
,

and

Dα
b−g(x) = 1

Γ(1− α)

(
g(x)

(b− x)α + α
∫ b

x

g(x)− g(y)
(y − x)α+1 dy

)
.

Last, we get by construction that similar to the fundamental theorem of calculus

Iαa+(Dα
a+f) = f, (12)

for all f ∈ Iαa+(Lp), and

Dα
a+(Iαa+g) = g, (13)

for all g ∈ Lp([a, b]). Equivalent results hold for Iαb− and Dα
b− .

2.3. Fractional Brownian motion. The one-dimensional fractional Brownian
motion, in short fBm, BH =

(
BH
t

)
t∈[0,T ]

with Hurst parameter H ∈ (0, 1
2) on a

complete probability space (Ω,F ,P) is defined as a centered Gaussian process with
covariance function

RH(t, s) := E
[
BH
t B

H
s

]
= 1

2
(
t2H + s2H − |t− s|2H

)
.

Note that E
[∣∣∣BH

t −BH
s

∣∣∣2] = |t − s|2H and hence BH has stationary increments
and almost surely Hölder continuous paths of order H − ε for all ε ∈ (0, H).
However, the increments of BH , H ∈ (0, 1

2), are not independent and BH is not a
semimartingale, see e.g. [32, Proposition 5.1.1].

Subsequently we give a brief outline of how a fractional Brownian motion can
be constructed from a standard Brownian motion. For more details we refer the
reader to [32].

Recall the following result (see [32, Proposition 5.1.3]) which gives the kernel
of a fractional Brownian motion and an integral representation of RH(t, s) in the
case of H < 1

2 .

Proposition 2.1 Let H < 1
2 . The kernel

KH(t, s) := cH

[(
t

s

)H− 1
2

(t− s)H−
1
2 +

(1
2 −H

)
s

1
2−H

∫ t

s
uH−

3
2 (u− s)H−

1
2du

]
, (14)
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where cH =
√

2H
(1−2H)β(1−2H,H+ 1

2) and β is the beta function, satisfies

RH(t, s) =
∫ t∧s

0
KH(t, u)KH(s, u)du. (15)

Subsequently, we denote by W a standard Brownian motion on the complete
filtered probability space (Ω,F ,FW ,P), where FW := (FWt )t∈[0,T ] is the natural
filtration of W augmented by all P-null sets. Using the kernel given in (14) it is
well known that the fractional Brownian motion BH has a representation

BH
t =

∫ t

0
KH(t, s)dWs, H ∈

(
0, 1

2

)
. (16)

Note that due to representation (16) the natural filtration generated by BH is
identical to FW . Furthermore, equivalent to the case of a standard Brownian
motion, it exists a version of Girsanov’s theorem for fractional Brownian motion
which is due to [16, Theorem 4.9]. In the following we state the version given in
[33, Theorem 3.1].

But first let us define the isomorphism KH from L2([0, T ]) onto IH+ 1
2

0+ (L2) (see
[16, Theorem 2.1]) given by

(KHϕ)(s) = I2H
0+ s

1
2−HI

1
2−H
0+ sH−

1
2ϕ, ϕ ∈ L2([0, T ]). (17)

From (17) and the properties of the Riemann-Liouville fractional integrals and
derivatives (12) and (13), the inverse of KH is given by

(K−1
H ϕ)(s) = s

1
2−HD

1
2−H
0+ sH−

1
2D2H

0+ ϕ(s), ϕ ∈ IH+ 1
2

0+ (L2).
It can be shown (see [33]) that if ϕ is absolutely continuous

(K−1
H ϕ)(s) = sH−

1
2 I

1
2−H
0+ s

1
2−Hϕ′(s), (18)

where ϕ′ denotes the weak derivative of ϕ.

Theorem 2.2 (Girsanov’s theorem for fBm) Let u = (ut)t∈[0,T ] be a process
with integrable trajectories and set B̃H

t = BH
t +

∫ t
0 usds, t ∈ [0, T ]. Assume that

(i)
∫ ·
0 usds ∈ I

H+ 1
2

0+ (L2([0, T ]), P-a.s., and
(ii) E[ET ]= 1, where

ET := exp
{
−
∫ T

0
K−1
H

(∫ ·
0
urdr

)
(s)dWs −

1
2

∫ T

0
K−1
H

(∫ ·
0
urdr

)2
(s)ds

}
.

Then the shifted process B̃H is an FW– fractional Brownian motion with Hurst
parameter H under the new probability measure P̃ defined by dP̃

dP = ET .

Remark 2.3. Theorem 2.2 can be extended to the multi- and infinite-dimensional
cases, which will be considered in this paper primarily. Indeed, note first that the
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measure change in Girsanov’s theorem acts dimension-wise. In particular, consider
the two dimensional shifted process

X
(1)
t = BH1

t +
∫ t

0
u(1)
s ds,

X
(2)
t = BH2

t +
∫ t

0
u(2)
s ds, t ∈ [0, T ],

whereBH1 andBH2 are two fractional Brownian motions with Hurst parametersH1
and H2 generated by the independent standard Brownian motions W (1) and W (2),
respectively, and u(1) and u(2) are two shifts fulfilling the conditions of Theorem 2.2.
Then the measure change with respect to the stochastic exponential

E (1)
T := exp

{
−
∫ T

0
K−1
H1

(∫ ·
0
u(1)
r dr

)
(s)dW (1)

s −
1
2

∫ T

0
K−1
H1

(∫ ·
0
u(1)
r dr

)2
(s)ds

}

yields the two dimensional process

X
(1)
t = B̃H1

t ,

X
(2)
t = BH2

t +
∫ t

0
u(2)
s ds, t ∈ [0, T ].

Here, B̃H1 is a fractional Brownian motions with respect to the measure P̃ defined
by dP̃

dP = E (1)
T . Note that BH2 is still a fractional Brownian motion under P̃, since

W (1) and W (2) are independent. Applying Girsanov’s theorem again with respect
to the stochastic exponential

E (2)
T := exp

{
−
∫ T

0
K−1
H2

(∫ ·
0
u(2)
r dr

)
(s)dW (2)

s −
1
2

∫ T

0
K−1
H2

(∫ ·
0
u(2)
r dr

)2
(s)ds

}
,

yields the two dimensional process

X
(1)
t = B̃H1

t ,

X
(2)
t = B̃H2

t , t ∈ [0, T ],

where B̃H1 and B̃H2 are independent fractional Brownian motions with respect to
the measure P̂ defined by

dP̂
dP

= dP̂
dP̃

dP̃
dP

= E (2)
T E

(1)
T .

Repeating iteratively yields the stochastic exponential – if well-defined –

ET :=
∏
k≥1
E (k)
T

acting on infinite dimensions.
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Finally, we give the property of strong local non-determinism of the fractional
Brownian motion BH with Hurst parameter H ∈ (0, 1

2) which was proven in [35,
Lemma 7.1]. This property will essentially help us to overcome the limitations of
not having independent increments of the underlying noise.

Lemma 2.4 Let BH be a fractional Brownian motion with Hurst parameter
H ∈ (0, 1

2). Then there exists a constant KH dependent merely on H such that for
every t ∈ [0, T ] and 0 < r ≤ t

Var
(
BH
t

∣∣∣BH
s : |t− s| ≥ r

)
≥ KHr

2H .

3. Cylindrical fractional Brownian motion and weak solutions

We start this section by defining the driving noise (Bt)t∈[0,T ] in SDE (3). Let
{W (k)}k≥1 be a sequence of independent one-dimensional standard Brownian mo-
tions on a joint complete probability space (Ω,F ,P). We define the cylindrical
Brownian motion W taking values in H by

Wt :=
∑
k≥1

W
(k)
t ek, t ∈ [0, T ],

and denote by FW :=
(
FWt

)
t∈[0,T ]

its natural filtration augmented by the P-null

sets. Moreover, we define a sequence of Hurst parameters H := {Hk}k≥1 ⊂
(
0, 1

2

)
with the following properties:
(i) ∑k≥1Hk <

1
6

(ii) supk≥1Hk <
1
12

Using H we construct the sequence of fractional Brownian motions {BHk}k≥1 as-
sociated to {W (k)}k≥1 by

BHk
t :=

∫ t

0
KHk(t, s)dW (k)

s , t ∈ [0, T ], k ≥ 1,

where the kernel KHk(·, ·) is defined as in (14). Note that the fractional Brown-
ian motions {BHk}k≥1 are independent by construction. Consequently, we define
the cylindrical fractional Brownian motion BH with associated sequence of Hurst
parameters H by

BH
t :=

∑
k≥1

BHk
t ek, t ∈ [0, T ]. (19)

Nevertheless, the cylindrical fractional Brownian motion BH is not in the space
L2(Ω;H). That is why we consider the operator Q : H → H defined by

Qx =
∑
k≥1

λ2
kx

(k)ek,
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for a given sequence of non-negative real numbers λ := {λk}k≥1 ∈ `2 such that
λ√
H

:=
{

λk√
Hk

}
k≥1
∈ `1. In particular, Q is a self-adjoint operator and we have that

the weighted cylindrical fractional Brownian motion

Bt :=
√
QBH

t =
∑
k≥1

λkB
Hk
t ek, (20)

lies in L2(Ω;H) for every t ∈ [0, T ]. Due to the following lemma the stochastic
process (Bt)t∈[0,T ] is continuous in time.

Lemma 3.1 The stochastic process (Bt)t∈[0,T ] defined in (20) has almost surely
continuous sample paths on [0, T ].

Proof. Note first that due to [10][Theorem 1] for any fractional Brownian motion
BH with Hurst parameter H ∈ (0, 1

2) there exists a constant C > 0 independent
of H such that

E
[

sup
t∈[0,T ]

∣∣∣BH
t

∣∣∣]≤ C√
H
. (21)

Using monotone convergence and (21) we have that

E
[

sup
t∈[0,T ]

‖Bt‖H

]
≤ E

 sup
t∈[0,T ]

∑
k≥1
|λk|

∣∣∣BHk
t

∣∣∣
≤∑

k≥1
λkE

[
sup
t∈[0,T ]

∣∣∣BHk
t

∣∣∣]

≤
∑
k≥1

λk
C√
Hk

<∞.

Thus, (
√
QBH

t )t∈[0,T ] is almost surely finite and {(πd
√
QBH

t )t∈[0,T ]}d≥1 is a Cauchy
sequence in L1(Ω; C([0, T ];H)) which converges almost surely to (

√
QBH

t )t∈[0,T ].
�

Before we come to the next result, let us recall the notion of a weak solution
and uniqueness in law.

Definition 3.2 The sextuple (Ω,F ,F,P,B, X) is called a weak solution of sto-
chastic differential equation (3), if
(i) (Ω,F ,F,P) is a complete filtered probability space, where F = {Ft}t∈[0,T ]

satisfies the usual conditions of right-continuity and completeness,
(ii) B = (Bt)t∈[0,T ] is a weighted cylindrical fractional (F,P)-Brownian motion as

defined in (20), and
(iii) X = (Xt)t∈[0,T ] is a continuous, F-adapted, H-valued process satisfying P-a.s.

Xt = x+
∫ t

0
b(s,Xs)ds+ Bt, t ∈ [0, T ].

Remark 3.3. For notational simplicity we refer solely to the process X as a weak
solution (or later on as a strong solution) in the case of an unambiguous stochastic
basis (Ω,F ,F,P, B).
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Definition 3.4 We say a weak solution X1 with respect to the stochastic basis
(Ω1,F1,F1,P1,B1) of the SDE (3) is weakly unique or unique in law, if for any other
weak solution X2 of (3) on a potential other stochastic basis (Ω2,F2,F2,P2,B2) it
holds that

P1
X1 = P2

X2 ,

whenever P1
X1

0
= P2

X2
0
.

Proposition 3.5 Let b : [0, T ]×H → H be a measurable and bounded function
with ‖bk‖∞ ≤ Ckλk < ∞ for every k ≥ 1 where C := {Ck}k≥1 ∈ `1. Then SDE
(3) has a weak solution (Xt)t∈[0,T ] such that

E
[

sup
t∈[0,T ]

‖Xt‖2
H

]
<∞.

Moreover, the solution is unique in law.
Proof. Let {W (k)}k≥1 be a sequence of independent standard Brownian motions
on the filtered probability space (Ω,F ,F,Q). Consider the cylindrical fractional
Brownian motion B̂H generated by {W (k)}k≥1 as defined in (19) with associated
sequence of Hurst parameters H. We define the stochastic exponential E by

Et := exp

∑
k≥1

(∫ t

0
K−1
Hk

(∫ ·
0
bk

(
u, x+

√
QB̂H

u

)
λ−1
k du

)
(s)dW (k)

s

−1
2

∫ t

0
K−1
Hk

(∫ ·
0
bk

(
u, x+

√
QB̂H

u

)
λ−1
k du

)2
(s)ds

)}
.

In order to show that the stochastic exponential E is well-defined we first have to
verify that for every k ≥ 1∫ ·

0
bk

(
u, x+

√
QB̂H

u

)
λ−1
k du ∈ IHk+ 1

2
0+

(
L2([0, T ])

)
, P− a.s..

Due to (18) this property is fulfilled, if for all k ≥ 1∫ T

0

(
bk

(
u, x+

√
QB̂H

u

)
λ−1
k

)2
du <∞,

which holds since ‖bk‖∞ ≤ Ckλk. Furthermore, we can find a constant C > 0 such
that

exp

1
2
∑
k≥1

∫ T

0
K−1
Hk

(∫ ·
0
bk

(
u, x+

√
QB̂H

u

)
λ−1
k du

)2
(s)ds


≤ exp

CT 2 ∑
k≥1

C2
k

 <∞.

Hence, by Novikov’s criterion Et is a martingale, in particular E[Et] = 1 for all
t ∈ [0, T ]. Consequently, under the probability measure P, defined by dP

dQ := ET ,
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the process BH
t := B̂H

t −
∫ t

0
√
Q
−1
b
(
u, x+

√
QB̂H

u

)
du, t ∈ [0, T ], is a cylindri-

cal fractional Brownian motion due to Theorem 2.2 and Remark 2.3. Therefore,
(Ω,F ,F,P,

√
QBH , X), where Xt := x +

√
QB̂H

t , is a weak solution of SDE (3).
Since the probability measures Q ≈ P are equivalent, the solution is unique in
law. �

4. Strong Solutions and Malliavin Derivative

After establishing the existence of a weak solution, we investigate under which
conditions SDE (3) has a strong solution. Therefore, let us first recall the notion
of a strong solution and moreover the notion of pathwise uniqueness.
Definition 4.1 A weak solution (Ω,F ,FB,P,B, Xx) of the stochastic differen-

tial equation (3) is called strong solution, if FB is the filtration generated by the
driving noise B and augmented with the P-null sets.
Definition 4.2 We say a weak solution (Ω,F ,F,P,B, X1) of (3) is pathwise

unique, if for any other weak solution (Ω,F ,F,P,B, X2) on the same stochastic
basis,

P
(
ω ∈ Ω : X1

t (ω) = X2
t (ω) ∀t ≥ 0

)
= 1.

The cause of this paper is to establish the existence of strong solutions of sto-
chastic differential equation (3) for singular drift coefficients b. More precisely, we
define the class B([0, T ] × H;H) of measurable functions b : [0, T ] × H → H for
which there exist sequences C ∈ `1 and D ∈ `1 such that for every k ≥ 1

sup
y∈H

sup
t∈[0,T ]

|bk(t, y)| ≤ Ckλk, and

sup
d≥1

∫
Rd

sup
t∈[0,T ]

|bk
(
t,
√
Q
√
Kτ−1y

)
|dy ≤ Dkλk,

(22)

where y = (y1, . . . , yd) and K : H → H is the defined by
Kx =

∑
k≥1

KHkx
(k)ek, x ∈ H, (23)

for {KHk}k≥1 being the local non-determinism constant of {BHk}k≥1 as given in
Lemma 2.4.

In order to prove the existence of a strong solution for drift coefficients of class
B([0, T ]×H;H) we proceed in the following way:
1) We define an approximating double-sequence {bd,ε}d≥1,ε>0 for drift coefficients

of type (22) which merely act on d dimensions and are sufficiently smooth
2) For every d ≥ 1 and ε > 0, we prove that the SDE

Xd,ε
t = x+

∫ t

0
bd,ε(s,Xd,ε

s )ds+ Bt, t ∈ [0, T ], (24)

has a unique strong solution which is Malliavin differentiable
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3) We show that the double-sequence of strong solutions Xd,ε
t converges weakly

to E
[
Xt|FWt

]
, where Xt is the unique weak solution of SDE (3)

4) Applying a compactness criterion based on Malliavin calculus, we prove that
the double-sequence is relatively compact in L2(Ω,FWt )

5) Last, we show that Xt is adapted to the filtration FB and thus is a strong
solution of SDE (3)

4.1. Approximating double-sequence. Recall the truncation operator πd, d ≥
1, defined in (6) and the change of basis operator τ defined in (7). We define
the operator π̃d : H → Rd as π̃d := τ ◦ πd. For every k ≥ 1 let the function
b̃d : [0, T ]× Rd → Rd be defined by

b̃d(t, z) = π̃db
(
t, τ−1z

)
. (25)

Let ϕε, ε > 0, be a mollifier on Rd such that for any locally integrable function
f : [0, T ]× Rd → Rd and for every t ∈ [0, T ] the convolution f(t, ·) ∗ ϕε is smooth
and

f(t, ·) ∗ ϕε → f(t, ·), ε→ 0,
almost everywhere with respect to the Lebesgue measure. Finally, we define for
every d ≥ 1 and ε > 0 the double-sequence bd,ε : [0, T ]×H → H by

bd,ε(t, y) := τ−1
(
b̃d(t, π̃dy) ∗ ϕε(π̃dy)

)
. (26)

Analogously to (25), we define for t ∈ [0, T ] and z ∈ Rd

b̃d,ε(t, z) := τbd,ε(t, τ−1z) = b̃d(t, z) ∗ ϕε(z). (27)
Due to the definition of the mollifier ϕε we have that for every d ≥ 1

bd,ε(t, τ−1z) = τ−1
(
b̃d(t, z) ∗ ϕε(z)

)
−−→
ε→0

τ−1b̃d(t, z) = bd(t, τ−1z) (28)

for almost every (t, z) ∈ [0, T ]× Rd with respect to the Lebesgue measure. Thus,
due to (28) and the canonical properties of the truncation operator we have that

bd,ε(t, y) −−→
ε→0

bd(t, y) −−−→
d→∞

b(t, y)

pointwise in [0, T ]×H, where bd := πdb. Due to the assumptions on b we further
get for every p ≥ 2 using dominated convergence that

lim
d→∞

lim
ε→0

E
[∫ T

0

∥∥∥bd,ε(t,Bxt )− b(t,Bxt )∥∥∥pH dt
] 1
p

= 0.

Hence, we can speak of an approximating double-sequence {bd,ε}d≥1,ε>0 of the drift
coefficient b. In line with the previously used notation we define

bd,εk (t, y) := 〈bd,ε(t, y), ek〉H = 〈b̃d,ε(t, τy), ẽk〉 =: b̃d,εk (t, τy),
bdk(t, y) := 〈bd(t, y), ek〉H = 〈b̃d(t, τy), ẽk〉 =: b̃dk(t, τy).
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Moreover, note that bd,ε, bd ∈ B([0, T ]×H;H).
Remark 4.3. Note that we needed to truncate and shift the domain of the

function b to Rd merely in order to apply mollification.
4.2. Malliavin differentiable strong solutions for regular drifts. In the fol-
lowing proposition we establish the existence of a unique strong solution for a class
of drift coefficients which contains the approximating sequence {bd,ε}d≥1,ε>0. More
specifically, we consider drift coefficients b ∈ B([0, T ] × H;H) such that for all
k ≥ 1 and all t ∈ [0, T ]

bk(t, ·) ∈ LipLk(H;R),
where L ∈ `2. We denote the space of such functions by L([0, T ]×H;H).
Proposition 4.4 Let b ∈ L([0, T ] × H;H). Then SDE (3) has a pathwise

unique strong solution.
Proof. In order to prove the existence of a strong solution we use Picard iteration
and proceed similar to the well-known case of finite dimensional SDEs. More
precisely, we define inductively the sequence Y 0 := x+ B and for all n ≥ 1

Y n
t = x+

∫ t

0
b
(
s, Y n−1

s

)
ds+ Bt, t ∈ [0, T ]. (29)

We show next that {Y n}n≥0 is a Cauchy sequence in L2([0, T ] × Ω). Indeed, due
to monotone convergence we get for every n ≥ 1 and t ∈ [0, T ]

E
[∥∥∥Y n+1

t − Y n
t

∥∥∥2

H

] 1
2

= E
[∥∥∥∥∫ t

0
b(s, Y n

s )− b(s, Y n−1
s )ds

∥∥∥∥2

H

] 1
2

(30)

≤
∫ t

0

∑
k≥1

E
[∣∣∣bk(s, Y n

s )− bk(s, Y n−1
s )

∣∣∣2]
 1

2

ds

≤ ‖L‖`2
∫ t

0
E
[∥∥∥Y n

s − Y n−1
s

∥∥∥2

H

] 1
2
ds,

and

E
[∥∥∥Y 1

t − Y 0
t

∥∥∥2

H

] 1
2

= E
[∥∥∥∥∫ t

0
b(s, x+ Bs)ds

∥∥∥∥2

H

] 1
2

≤ t‖Cλ‖`2 .

By induction we obtain for every n ≥ 0 a constant A depending on C, λ and L
such that

E
[∥∥∥Y n+1

t − Y n
t

∥∥∥2

H

] 1
2
≤ An+1

(n+ 1)!t
n+1.

Hence, for every m,n ≥ 0

‖Y m − Y n‖L2([0,T ]×Ω;H) ≤
m−1∑
k=n
‖Y k+1 − Y k‖L2([0,T ]×Ω;H)
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=
m−1∑
k=n

E
[∫ T

0

∥∥∥Y k+1
t − Y k

t

∥∥∥2

H
dt

] 1
2

≤
m−1∑
k=n

Ak+1

(k + 1)!T
k+ 3

2 =: B(n,m).

Since B(n,m) is bounded by T 1
2 eAT , the series converges and

B(n,m) −−−−→
n,m→∞

0.

Therefore {Y n}n≥0 is a Cauchy sequence in L2([0, T ]× Ω;H). Define

Xt := lim
n→∞

Y n
t

as the L2([0, T ]×Ω;H) limit of {Y n}n≥0. Then Xt is FB
t adapted for all t ∈ [0, T ]

since this holds for all Y n
t , n ≥ 0. We prove that Xt solves SDE (3):

We have for all n ≥ 0 and t ∈ [0, T ] that

Y n+1
t = x+

∫ t

0
b(s, Y n

s )ds+ Bt.

Using the Lipschitz continuity of b, we get

E
[∥∥∥∥∫ t

0
b(s, Y n

s )− b(s,Xs)ds
∥∥∥∥2

H

] 1
2

≤
∫ t

0

∑
k≥1

E
[
|bk(s, Y n

s )− bk(s,Xs)|2
] 1

2

ds

≤ ‖L‖`2
∫ t

0
E
[
‖Y n

s −Xs‖2
H

] 1
2ds −−−→

n→∞
0.

Hence, (Xt)t∈[0,T ] is a strong solution of SDE (3).
In order to show pathwise uniqueness, let X and Y be two strong solutions on

the same stochastic basis (Ω,F ,P,B) with the same initial condition. Then for all
t ∈ [0, T ] we get similar to (30) that

E
[
‖Xt − Yt‖2

H

] 1
2 ≤ ‖L‖`2

∫ t

0
E
[
‖Xs − Ys‖2

H

] 1
2ds.

Using Grönwall’s inequality yields that E
[
‖Xt − Yt‖2

H

]
= 0 for all t ∈ [0, T ], and

therefore Xt = Yt P-a.s. for all t ∈ [0, T ]. But since X and Y are almost surely
continuous we get

P
(
ω ∈ Ω : X1

t (ω) = X2
t (ω) ∀t ≥ 0

)
= 1.

�

Next we investigate under which conditions the unique strong solution is Malli-
avin differentiable. But let us start with a definition of Malliavin differentiability
of a random variable in the space H.
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Definition 4.5 Let X be anH-valued square integrable functional of the cylin-
drical Brownian motion (Wt)t∈[0,T ]. We define the operator Dm, m ≥ 1, such that

DmX =
∑
k≥1

DmX(k)ek,

as the Malliavin derivative in the direction of the m-th Brownian motion W (m).
Here, DmX(k), m, k ≥ 1, is the (standard) Malliavin derivative with respect to
the Brownian motion W (m) of the square integrable random variable X(k) taking
values in R. We say a random variable X with values in H is in the space D1,2(H)
of Malliavin differentiable functions in L2(Ω) if and only if

‖X‖2
D1,2(H) :=

∑
m≥1

∫ T

0
E
[
‖Dm

s X‖
2
H

]
ds <∞.

Moreover, a stochastic process (Xt)t∈[0,T ] with values in H is said to be in the space
D1,2([0, T ]×H) if and only if for every t ∈ [0, T ]

‖Xt‖2
D1,2(H) :=

∑
m≥1

∫ T

0
E
[
‖Dm

s Xt‖2
H

]
ds <∞.

By means of Definition 4.5 we extend the well-known chain rule in Malliavin
Calculus, cf. [32, Proposition 1.2.4], to Malliavin differentiable random variables
taking values in H. But first we define the class L0(H) of Lipschitz continuous
functions on H with vanishing Lipschitz constants.

We say a function f : H → H is in the space L0(H) if there exist sequences of
constants L,M ∈ `2 such that for all k ≥ 1 and x, y ∈ H

|〈f(x)− f(y), ek〉H| ≤ Lk
∑
i≥1

Mi|〈x− y, ei〉H|. (31)

Lemma 4.6 Let f ∈ L0(H) with associated Lipschitz sequences L,M ∈ `2 and
Y ∈ D1,2(H). Then, f(Y ) ∈ D1,2(H) and there exists a double-sequence {G(k)

i }k,i≥1

of random variables with G(k)
i ≤ Lk ·Mi P-a.s. for all k, i ≥ 1 such that for every

m ≥ 1

Dmf(Y ) =
∑
k≥1

∑
i≥1

G
(k)
i Dm〈Y, ei〉Hek. (32)

Moreover,

‖f(Y )‖D1,2(H) ≤ ‖L‖`2 · ‖M‖`2 · ‖Y ‖D1,2(H) .

Proof. First, consider the case f : Rd → Rd for some d ≥ 1, where Y is taking val-
ues in Rd. Using the chain rule, see [32, Proposition 1.2.4], and the notion of Malli-
avin Differentiability in Definition 4.5, there exists a double-sequence {G(k)

i }1≤k,i≤d
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of random variables with G(k)
i ≤ Lk ·Mi P-a.s. for all 1 ≤ k, i ≤ d such that for

every m ≥ 1

Dmf(Y ) =
d∑

k=1
Dmfk(Y )ẽk =

d∑
k=1

d∑
i=1

G
(k)
i Dm〈Y, ẽi〉ẽk. (33)

Recall the change of basis operator τ : H → `2 defined in (7). Let now f : Hd →
Hd, where Y is taking values in Hd. Define g : Rd → Rd by g := τ ◦ f ◦ τ−1. Then
g is Lipschitz continuous in the sense of (31) with associated Lipschitz sequences
L,M ∈ `2 and due to equality (33) we get the identity

τDmf(Y ) = τ
d∑

k=1
Dmfk(Y )ek =

d∑
k=1

Dmgk(τY )ẽk

=
d∑

k=1

d∑
i=1

G
(k)
i Dm〈τY, ẽi〉ẽk =

d∑
k=1

d∑
i=1

G
(k)
i Dm〈Y, ei〉Hẽk

= τ
d∑

k=1

d∑
i=1

G
(k)
i Dm〈Y, ei〉Hek.

Thus, equation (32) holds for f : Hd → Hd. Let finally f : H → H, where Y is
taking values in H. Recall the truncation operator πd : H → Hd defined in (6).
Since f is Lipschitz continuous, f(πdY ) converges to f(Y ) in L2(Ω). Furthermore,
we have for every d ≥ 1 that

‖πdf(πdY )‖2
D1,2(H) =

∑
m≥1

∫ T

0
E
[
‖Dm

s (πdf(πdY ))‖2
H

]
ds (34)

=
∑
m≥1

d∑
k=1

∫ T

0
E

∣∣∣∣∣
d∑
i=1

G
d,(k)
i Dm

s 〈Y, ei〉H
∣∣∣∣∣
2ds

≤ ‖L‖2
`2

∑
m≥1

∫ T

0
E

∣∣∣∣∣
d∑
i=1

MiD
m
s 〈Y, ei〉H

∣∣∣∣∣
2ds

≤ ‖L‖2
`2 · ‖M‖2

`2

∑
m≥1

∫ T

0
E
[
‖Dm

s Y ‖
2
H

]
ds = ‖L‖2

`2 · ‖M‖2
`2 · ‖Y ‖

2
D1,2(H) <∞.

Note that the double-sequence {Gd,(k)
i }i≥1,k≥1 depends on d ≥ 1. Nevertheless,

‖πdf(πdY )‖D1,2(H) is uniformly bounded in d ≥ 1. Thus, due to [32, Lemma
1.2.3] and dominated convergence we have f(Y ) ∈ D1,2(H) and Dm(πdf(πdY ))
converges weakly to Dmf(Y ) for every m ≥ 1. Moreover, the sequence {Gd,(k)

i }d≥1
is bounded by Lk ·Mi for every k, i ≥ 1. Hence, for every k, i ≥ 1 there exists
a subsequence {Gdn,(k)

i }n≥1 which converges weakly to some random variable G̃(k)
i
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which is bounded by Lk ·Mi. Summarizing we get that in L2([0, T ]× Ω;H)

Dmf(Y ) = lim
n→∞

πdnD
mf(πdnY ) = lim

n→∞

dn∑
k=1

dn∑
i=1

G
dn,(k)
i Dm〈Y, ei〉Hek

=
∑
k≥1

∑
i≥1

G̃
(k)
i Dm〈Y, ei〉Hek,

where the last equality holds due to (34) and dominated convergence. �

Define the class L0([0, T ]×H;H) by

L0([0, T ]×H;H) =
{f ∈ B([0, T ]×H;H) : f(t, ·) ∈ L0(H) uniformly in t ∈ [0, T ]} ,

and note that f(t, ·) ∈ L0(H) uniformly in t ∈ [0, T ] implies fk(t, ·) ∈ LipLk(H;R),
k ≥ 1, uniformly in t ∈ [0, T ] for some sequence L ∈ `2. Thus, L0([0, T ]×H;H) ⊂
L([0, T ]×H;H).

Proposition 4.7 Let b ∈ L0([0, T ] × H;H). Then the unique strong solution
(Xt)t∈[0,T ] of (3) is Malliavin differentiable.

Proof. Recall the Picard iteration defined in (29)

Y n
t = x+

∫ t

0
b
(
s, Y n−1

s

)
ds+ Bt, t ∈ [0, T ], n ≥ 1, (35)

and Y 0 = x+B. We denote the k-th dimension of the infinite dimensional system
(35) by Y n,(k) := 〈Y n, ek〉H.

Using the Picard iteration (35), we show that for every step n ≥ 0 the process
Y n is Malliavin differentiable. We prove this using induction. For n = 0 we have
that for all t ∈ [0, T ] using (15)∥∥∥Y 0

t

∥∥∥2

D1,2(H)
=
∑
m≥1

∫ T

0
E
[∥∥∥Dm

s Y
0
t

∥∥∥2

H

]
ds

=
∑
m≥1

∫ T

0
E


∥∥∥∥∥∥
∑
k≥1

λkD
m
s B

Hk
t ek

∥∥∥∥∥∥
2

H

ds
=
∑
m≥1

∫ T

0
E
[∥∥∥λmDm

s B
Hm
t em

∥∥∥2

H

]
ds

=
∑
m≥1

∫ T

0
λ2
mK

2
Hm(t, s)ds

=
∑
m≥1

λ2
mRHm(t, t) =

∑
m≥1

λ2
mt

2Hm <∞.
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Now suppose that ‖Y n
t ‖D1,2(H) < ∞ for n ≥ 0. Due to Lemma 4.6 b(t, Y n

t ) is in
D1,2(H) and we have for every t ∈ [0, T ] that

‖b(t, Y n
t )‖D1,2(H) ≤ ‖L‖`2 · ‖M‖`2 · ‖Y

n
t ‖D1,2(H) <∞,

for some L,M ∈ `2 independent of n ≥ 0. Moreover,
∫ T
0 b(r, Y n

r )dr is Malliavin
differentiable admitting for all 0 ≤ s ≤ T the representation

Dm
s

(∫ T

0
b(r, Y n

r )dr
)

=
∫ T

s
Dm
s b(r, Y n

r )dr.

Thus, we get for Y n+1 that∥∥∥Y n+1
t

∥∥∥
D1,2(H)

=
∥∥∥∥∥
(∫ T

0
b(s, Y n

s )ds+ Y 0
t

)∥∥∥∥∥
D1,2(H)

≤
∫ T

0
‖b(s, Y n

s )‖D1,2(H) ds+
∥∥∥Y 0

t

∥∥∥
D1,2(H)

≤ ‖L‖`2 · ‖M‖`2 ·
∫ T

0
‖Y n

s ‖D1,2(H) ds+
∥∥∥Y 0

t

∥∥∥
D1,2(H)

<∞.

Hence, Y n+1 is Malliavin differentiable in the sense of Definition 4.5. Moreover,
we can find a positive constant A depending on L,M, λ and T such that

‖Y n
t ‖D1,2(H) ≤

n∑
k=0

Ak+1

k! tk ≤ A · eAt.

Consequently, ‖Y n
t ‖

2
D1,2(H) is uniformly bounded in n ≥ 0 and therefore, since

Y n → X in L2([0, T ]×Ω) and the Malliavin derivative is a closable operator, also
X is Malliavin differentiable in the sense of Definition 4.5. �

Let us finally put the previous results together and show that SDE (24) has a
unique Malliavin differentiable strong solution.

Corollary 4.8 Let bd,ε : [0, T ] × H → H be defined as in (26). Then, SDE
(24) has a unique strong solution

(
Xd,ε
t

)
t∈[0,T ]

which is Malliavin differentiable.

Furthermore, the Malliavin derivative Dm
s X

d,ε
t has for 0 ≤ s < t ≤ T a.s. the

representation
Dm
s X

d,ε
t = λmKHm(t, s)em (36)

+ λm
∑
n≥1

∫
∆n
s,t

KHm(u1, s)
d∑

η0,...ηn−1=1

 n∏
j=1

∂ηj b̃
d,ε
ηj−1

(
uj, τX

d,ε
uj

) eη0du,

where ηn = m and b̃d,ε : [0, T ]× Rd → Rd is defined as in (27).

Proof. If the drift function bd,ε is in the class L0([0, T ]×H,H), then SDE (24) has
a unique Malliavin differentiable strong solution by Proposition 4.4 and Propo-
sition 4.7. Thus we merely need to show that bd,ε(t, ·) ∈ L0(H) uniformly in
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t ∈ [0, T ]. Let t ∈ [0, T ] and y, z ∈ H. Then, using the triangular inequality and
the mean-value theorem we get for all 1 ≤ k ≤ d that∣∣∣〈bd,ε(t, y)− bd,ε(t, z), ek

〉
H

∣∣∣ =
∣∣∣bd,εk (t, y)− bd,εk (t, z)

∣∣∣ =
∣∣∣b̃d,εk (t, τ−1y)− b̃d,εk (t, τ−1z)

∣∣∣
≤

d∑
i=1

∣∣∣∣∣∣b̃d,εk
t, i−1∑

j=1
zj ẽj +

d∑
j=i

yj ẽj

− b̃d,εk
t, i∑

j=1
zj ẽj +

d∑
j=i+1

yj ẽj

∣∣∣∣∣∣
≤

d∑
i=1

sup
ξ∈Rd
|∂ib̃d,εk (t, ξ)||yi − zi| =

d∑
i=1

sup
ξ∈Rd
|∂ib̃d,εk (t, ξ)||〈y − z, ei〉|.

Note that we can find sequences {Lk}1≤k≤d and {Mi}1≤i≤d such that for all 1 ≤
k, i ≤ d we have supξ∈Rd |∂ib̃

d,ε
k (t, ξ)| ≤ Lk ·Mi. Hence, bd,ε ∈ L0([0, T ]×H;H).

It is left to show that representation (36) holds. First note that due to the
definition of the Malliavin derivative of a random variable Y with values in H, see
Definition 4.5, we have that Dm(τY ) = τDmY , for all m ≥ 1. Consequently, we
get for 0 ≤ s < t ≤ T using Lemma 4.6 that the Malliavin derivative Dm

s X
d,ε
t can

be written as

Dm
s X

d,ε
t = τ−1Dm

s X̃
d,ε
t =

∫ t

s
∇b̃d,ε

(
u, X̃d,ε

u

)
Dm
s X

d,ε
u du+Dm

s Bt.

Iterating this step yields

Dm
s X

d,ε
t =

∑
n≥1

∫
∆n
s,t

 n∏
j=1
∇b̃d,ε

(
uj, X̃

d,ε
uj

)λmKHm(u1, s)emdu+ λmKHm(t, s)em.

Further note that

∇b̃d,ε
(
uj, X̃

d,ε
uj

)
= ∇

(
d∑

k=1
b̃d,εk

(
uj, X̃

d,ε
uj

)
ek

)
=

d∑
l=1

d∑
k=1

∂lb̃
d,ε
k

(
uj, X̃

d,ε
uj

)
eke
>
l .

Thus, we get for every n ≥ 1
n∏
j=1
∇b̃d,ε

(
uj, X̃

d,ε
uj

)
=

d∑
l=1

d∑
k=1

 d∑
η1,...ηn−1=1

n∏
j=1

∂ηj b̃
d,ε
ηj−1

(
uj, X̃

d,ε
uj

) eke>l , (37)

where η0 = k and ηn = l and consequently, representation (36) holds. �

4.3. Weak convergence. In this step we show that the sequence of unique strong
solutions {Xd,ε}d≥1,ε>0 of the approximating SDEs (24) converge weakly to the
weak solution of (3) where b ∈ B([0, T ]×H;H).

Lemma 4.9 Let b ∈ B([0, T ] × H;H). Furthermore, let (Xt)t∈[0,T ] be the
weak solution of (3). Consider the approximating sequence of strong solutions
{(Xd,ε

t )t∈[0,T ]}d≥1,ε>0 of SDEs (24), where bd,ε : [0, T ]×H → H is defined as in (26).
Then, for every t ∈ [0, T ] and for any bounded continuous function φ : H → R

φ(Xd,ε
t ) −−−−−−→

d→∞,ε→0
E
[
φ(Xt)

∣∣∣FWt ],
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weakly in L2(Ω,FWt ).

Proof. Using the Wiener transform

W(Z)(f) := E
[
ZE

(∫ T

0
〈f(s), dWs〉H

)]
,

of some random variable Z ∈ L2(Ω,FWT ) in f ∈ L2([0, T ];H), it suffices to show
for any arbitrary f ∈ L2([0, T ];H) that

W(φ(Xd,ε
t ))(f) −−−−−−→

d→∞,ε→0
W
(
E
[
φ(Xt)

∣∣∣FWt ]) (f).

So, let f ∈ L2([0, T ];H) be arbitrary, then by using Girsanov’s theorem we get∣∣∣W(φ(Xd,ε
t ))(f)−W

(
E
[
φ(Xt)

∣∣∣FWt ]) (f)
∣∣∣

=

∣∣∣∣∣∣E
φ(Bxt )E

∫ T

0

〈
f(s) +

(
d∑

k=1
K−1
Hk

(∫ ·
0
bd,εk (u,Bxu)λ−1

k du
)

(s)ek
)
, dWs

〉
H


− E

φ(Bxt )E
∫ T

0

〈
f(s) +

∑
k≥1

K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)ek

 , dWs

〉
H

∣∣∣∣∣∣
. E

∣∣∣∣∣∣E
∫ T

0

〈
f(s) +

(
d∑

k=1
K−1
Hk

(∫ ·
0
bd,εk (u,Bxu)λ−1

k du
)

(s)ek
)
, dWs

〉
H


− E

∫ T

0

〈
f(s) +

∑
k≥1

K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)ek

 , dWs

〉
H

∣∣∣∣∣∣
 .

Using the inequality
|ex − ey| ≤ |x− y| (ex + ey) ∀x, y ∈ R,

we get∣∣∣W(φ(Xd,ε
t ))(f)−W

(
E
[
φ(Xt)

∣∣∣FWt ]) (f)
∣∣∣

. E

∣∣∣∣∣∣
∫ T

0

〈
f(s) +

(
d∑

k=1
K−1
Hk

(∫ ·
0
bd,εk (u,Bxu)λ−1

k du
)

(s)ek
)
, dWs

〉
H

−
∫ T

0

〈
f(s) +

∑
k≥1

K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)ek

 , dWs

〉
H

∣∣∣∣∣∣


+ E

∣∣∣∣∣∣
∫ T

0

〈(
f(s) +

(
d∑

k=1
K−1
Hk

(∫ ·
0
bd,εk (u,Bxu)λ−1

k du
)

(s)ek
))2

, ds

〉
H

−
∫ T

0

〈f(s) +
∑
k≥1

K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)ek

2

, ds

〉
H

∣∣∣∣∣∣∣
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≤ E
[∣∣∣∣∣

d∑
k=1

∫ T

0
K−1
Hk

(∫ ·
0
bd,εk (u,Bxu)λ−1

k − bk(u,Bxu)λ−1
k du

)
(s)dW (k)

s

−
∑

k≥d+1

∫ T

0
K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)dW (k)
s

∣∣∣∣∣∣


+ Ad,ε(f),
where

Ad,ε(f) := E

∣∣∣∣∣∣
∫ T

0

〈(
f(s) +

(
d∑

k=1
K−1
Hk

(∫ ·
0
bd,εk (u,Bxu)λ−1

k du
)

(s)ek
))2

, ds

〉
H

−
∫ T

0

〈f(s) +
∑
k≥1

K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)ek

2

, ds

〉
H

∣∣∣∣∣∣∣
 .

For every k ≥ 1, we get with representation (18) that

K−1
Hk

(d, ε, s) := K−1
Hk

(∫ ·
0
bd,εk (u,Bxu)λ−1

k − bk(u,Bxu)λ−1
k du

)
(s)

= sHk−
1
2 I

1
2−Hk
0+ s

1
2−Hk

(
bd,εk (s,Bxs)− bk(s,Bxs)

)
λ−1
k

= λ−1
k

Γ
(

1
2 −Hk

) ∫ s

0

(
u

s

) 1
2−Hk

(s− u)− 1
2−Hk

(
bd,εk (u,Bxu)− bk(u,Bxu)

)
du,

which is bounded by∣∣∣K−1
Hk

(d, ε, s)
∣∣∣ ≤ 2 Ck

Γ
(

1
2 −Hk

) ∫ s

0

(
u

s

) 1
2−Hk

(s− u)− 1
2−Hkdu

= 2 Ck

Γ
(

1
2 −Hk

)s 1
2−Hkβ

(3
2 −Hk,

1
2 −Hk

)
. Ck.

Consequently, we get for every d ≥ 1 using the Burkholder-Davis-Gundy inequality
that

E
[∣∣∣∣∣

d∑
k=1

∫ T

0
K−1
Hk

(d, ε, s)dW (k)
s

∣∣∣∣∣
]
≤

d∑
k=1

E
[∫ T

0

∣∣∣K−1
Hk

(d, ε, s)
∣∣∣2 ds] 1

2

.
∑
k≥1

Ck <∞.

Hence, by dominated convergence

lim
d→∞

lim
ε→0

E
[∣∣∣∣∣

d∑
k=1

∫ T

0
K−1
Hk

(d, ε, s)dW (k)
s

∣∣∣∣∣
]

= 0.

Equivalently, we have

E

∣∣∣∣∣∣
∫ T

0

∑
k≥d+1

K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)dW (k)
s

∣∣∣∣∣∣
.∑

k≥1
Ck <∞.
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Thus, again by dominated convergence

lim
d→∞

lim
ε→0

E

∣∣∣∣∣∣
∫ T

0

∑
k≥d+1

K−1
Hk

(∫ ·
0
bk(u,Bxu)λ−1

k du
)

(s)dW (k)
s

∣∣∣∣∣∣
= 0.

Similarly, one can show that Ad,ε(f) vanishes for every f ∈ L2([0, T ];H) as ε→ 0
and d→∞. Consequently, φ(Xd,ε

t ) −−−−−−→
d→∞,ε→0

E
[
φ(Xt)

∣∣∣FWt ]weakly in L2(Ω,FWt ).
�

4.4. Application of the compactness criterion.

Theorem 4.10 The double-sequence
{
Xd,ε
t

}
d≥1,ε>0

of strong solutions of SDE
(24) is relatively compact in L2(Ω,FWt ).

Proof. We are aiming at applying the compactness criterion given in Theorem A.3.
Therefore, let 0 < αm < βm < 1

2 and γm > 0 for all m ≥ 1 and define the sequence
µs,m = 2−iαmγm, if s = 2i + j, i ≥ 0, 0 ≤ j ≤ 2i, m ≥ 1 where µs,m −→ 0 for
s,m −→ ∞. We have to check that there exists a uniform constant C such that
for all {Xd,ε

t }d≥1,ε>0 ∥∥∥Xd,ε
t

∥∥∥
L2(Ω;H)

≤ C, (38)

∑
m≥1

γ−2
m

∥∥∥DmXd,ε
t

∥∥∥2

L2(Ω;L2([0,T ];H))
≤ C,

and

∑
m≥1

1
(1− 2−2(βm−αm))γ2

m

∫ T

0

∫ T

0

∥∥∥Dm
s X

d,ε
t −Dm

u X
d,ε
t

∥∥∥2

L2(Ω;H)

|s− u|1+2βm dsdu ≤ C. (39)

Note first that (38) is fulfilled due to the uniform boundedness of {bd,ε}d≥1,ε>0 and
the definition of the process (Bt)t∈[0,T ], see (20).

Next we show uniform boundedness of (39). Note first that under the assump-
tion u ≤ s we have

Dm
s X

d,ε
t −Dm

u X
d,ε
t = λm (KHm(t, s)−KHm(t, u)) em

+
∫ t

s
∇b̃d,ε(v, X̃d,ε

v )Dm
s X

d,ε
v dv −

∫ t

u
∇b̃d,ε(v, X̃d,ε

v )Dm
u X

d,ε
v dv

= λm (KHm(t, s)−KHm(t, u)) em −
∫ s

u
∇b̃d,ε(v, X̃d,ε

v )Dm
u X

d,ε
v dv

+
∫ t

s
∇b̃d,ε(v, X̃d,ε

v )
(
Dm
s X

d,ε
v −Dm

u X
d,ε
v

)
dv

= λm (KHm(t, s)−KHm(t, u)) em −Dm
u X

d,ε
s + λmKHm(s, u)em

+
∫ t

s
∇b̃d,ε(v, X̃d,ε

v )
(
Dm
s X

d,ε
v −Dm

u X
d,ε
v

)
dv.
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Using iteration we obtain the representation

Dm
s X

d,ε
t −Dm

u X
d,ε
t = λm (KHm(t, s)−KHm(t, u)) em

+ λm
∑
n≥1

∫
∆n
s,t

n∏
j=1
∇b̃d,ε(vj, X̃d,ε

vj
) (KHm(v1, s)−KHm(v1, u)) emdv

+
Id +

∑
n≥1

∫
∆n
s,t

n∏
j=1
∇b̃d,ε(vj, X̃d,ε

vj
)dv

(λmKHm(s, u)em −Dm
u X

d,ε
s

)
,

where by Corollary 4.8(
λmKHm(s, u)em −Dm

u X
d,ε
s

)
=

− λm
∑
n≥1

∫
∆n
u,s

KHm(v1, u)
d∑

η0,...,ηn−1=1

n∏
j=1

∂ηj b̃
d,ε
ηj−1

(vj, X̃d,ε
vj

)eη0dv.

Consequently, we get due to (37) that

Dm
s X

d,ε
t −Dm

u X
d,ε
t = λm (I1 + I2 + I3) ,

where

I1 := (KHm(t, s)−KHm(t, u)) em,

I2 :=
∑
n≥1

∫
∆n
s,t

(KHm(v1, s)−KHm(v1, u))
d∑

η0,...,ηn−1=1

n∏
j=1

∂ηj b̃
d,ε
ηj−1

(vj, X̃d,ε
vj

)eη0dv,

I3 := −
Id +

∑
n≥1

∫
∆n
s,t

d∑
η0,...,ηn−1=1

n∏
j=1

∂ηj b̃
d,ε
ηj−1

(vj, X̃d,ε
vj

)dv


×
∑
n≥1

∫
∆n
u,s

KHm(v1, u)
d∑

η0,...,ηn−1=1

n∏
j=1

∂ηj b̃
d,ε
ηj−1

(vj, X̃d,ε
vj

)eη0dv.

In the following we consider each Ii, i = 1, 2, 3, separately starting with the first.
Due to Lemma B.3 there exists β1 ∈

(
0, 1

2

)
and a constant K1 > 0 such that

∫ t

0

∫ t

0

‖I1‖2
L2(Ω;H)

|s− u|1+2β1
dsdu =

∫ t

0

∫ t

0

|KHm(t, s)−KHm(t, u)|
|s− u|1+2β1

dsdu ≤ K1 <∞.

Consider now I2. Define the density Edt by

Edt := exp
{

d∑
k=1

(∫ t

0
K−1
Hk

(∫ ·
0
bd,εk

(
u,Xd,ε

u

)
λ−1
k du

)
(s)dW (k)

s

−1
2

∫ t

0
K−1
Hk

(∫ ·
0
bd,εk

(
u,Xd,ε

u

)
λ−1
k du

)2
(s)ds

)}
.
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Then applying Girsanov’s theorem 2.2, monotone convergence and noting that
supd≥1 supt∈[0,T ]] ‖Edt ‖L4(Ω) <∞ yields

‖I2‖2L2(Ω;H)

≤
∑
n≥1

d∑
η0,...ηn−1=1

∥∥∥∥∥∥Edt
∫

∆n
s,t

(KHm(v1, s)−KHm(v1, u))
n∏
j=1

∂ηj b̃
d,ε
ηj−1

(
vj , τBxvj

)
dv

∥∥∥∥∥∥
2

L2(Ω)

.
∑
n≥1

d∑
η0,...ηn−1=1

∥∥∥∥∥∥
∫

∆n
s,t

(KHm(v1, s)−KHm(v1, u))
n∏
j=1

∂ηj b̃
d,ε
ηj−1

(
vj , τBxvj

)
dv

∥∥∥∥∥∥
2

L4(Ω)

.

Using equation (9) yields that

|A2|2 :=

∣∣∣∣∣∣
∫

∆n
s,t

(KHm(v1, s)−KHm(v1, u))
n∏
j=1

∂ηj b̃
d,ε
ηj−1

(
vj, τBxvj

)
dv

∣∣∣∣∣∣
2

can be written as

|A2|2 =
∑

σ∈S(n,n)

∫
∆2n

s,t

 2n∏
j=1

g[σ(j)]

(
vj , τBxvj

)( 1∏
i=0

(
KHm(v(in+1), s)−KHm(v(in+1), u)

))
dv

where for j = 1, . . . , n

gj (·, τBx· ) = ∂ηj b̃
d,ε
ηj−1

(·, τBx· )

Repeating the application of (9) yields

|A2|4 =
∑

σ∈S(4;n)

∫
∆4n

s,t

 4n∏
j=1

g[σ(j)]

(
vj , τBxvj

)( 3∏
i=0

(
KHm

(v(in+1), s)−KHm
(v(in+1), u)

))
dv.

Defining fd,εj (t, ỹ) := b̃d,εηj−1

(
t,
√
Q
√
Kỹ
)
permits the use of Proposition B.2 with∑4n

j=1 εj = 4, |αj| = 1 for all 1 ≤ j ≤ 4n and thus |α| = 4n. Consequently, we get
using the assumptions on H and b that

E
[
|A2|4

]
=

∥∥∥∥∥∥
∫

∆n
s,t

(KHm(v1, s)−KHm(v1, u))
n∏
j=1

∂ηjb
d,ε
ηj−1

(
vj, τBxvj

)
dv

∥∥∥∥∥∥
4

L4(Ω)

≤ #S(4;n)
K4n
d,H · T

|α|
12

√
2π4dn

(
CHm,T

(
s− u
su

)γm
s(Hm− 1

2−γm)
)∑4n

j=1 εj

×
n∏
j=1

∥∥∥∥b̃d,εηj−1
(·,
√
Q
√
Kzj)

∥∥∥∥4

L1(Rd;L∞([0,T ]))

×

(∏d
k=1

(
2
∣∣∣α(k)

∣∣∣)!) 1
4 (t− s)−

∑d

k=1Hk(4n+2|α(k)|)+(Hm− 1
2−γm)∑4n

j=1 εj+4n

Γ(8n−∑d
k=1Hk(8n+ 4 |α(k)|) + 2(Hm − 1

2 − γm)∑4n
j=1 εj)

1
2
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≤ 28nK
4n
d,H · T

n
3

√
2π4dn C4

Hm,T

n∏
j=1

D4
ηj−1

λ4
ηj−1

×
(
s− u
su

)4γm
s4(Hm− 1

2−γm)(t− s)4(Hm− 1
2−γm)T 4nSn,

where

Sn = sup
η

(∏d
k=1

(
2
∣∣∣α(k)

∣∣∣)!) 1
4

Γ
(
8n−∑d

k=1Hk (8n+ 4 |α(k)|) + 8
(
Hm − 1

2 − γm
)) 1

2
.

For n ≥ 1 we have due to the assumptions on H that

An := 8n−
d∑

k=1
Hk

(
8n+ 4

∣∣∣α(k)
∣∣∣)+ 8

(
Hm −

1
2 − γm

)

≥ 8n− 8n‖H‖`1 − 16n sup
k≥1
|Hk| − 4 > 16

3 n− 4 > 0.

Thus, we have for n sufficiently large that

Γ(An) ≥ Γ
(16

3 n− 4
)
∼ Γ

(16
3 n+ 1

)(16
3 n

)−4
,

and therefore by the approximations in Remark B.7

Sn ≤

(∏d
k=1

(
2
∣∣∣α(k)

∣∣∣)!) 1
4

Γ
(
8n−∑d

k=1Hk (8n+ 4 |α(k)|) + 8
(
Hm − 1

2 − γm
)) 1

2

∼
(2π)

d
8 e

n
2 ((10n)!) 1

4
(

16
3 n
)2

(20πn)
1
8 Γ

(
16
3 n+ 1

) 1
2

≤ Cn (2π)
d
8 ((10n)!) 1

4n
15
8

Γ
(

16
3 n+ 1

) 1
2

,

where C > 0 is a constant which may in the following vary from line to line. Using
Stirling’s formula we have moreover that

(10n)!
Γ
(

16
3 n+ 1

)2 ≤
e

1
120n
√

20πn
(

10n
e

)10n

32
3 πn

(
16
3 n

e

) 32
3 n

≤ Cn√
4
3n

(2
3n
)− 2

3n

≤ Cn

Γ
(

2
3n+ 1

) .
Consequently, we have for Sn that

Sn ∼ Cn (2π)
d
8 n

15
8

 1
Γ
(

2
3n+ 1

)
 1

4

.
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Furthermore, using Lemma C.4 we have for every n ≥ 1 that
d∑

η0,...ηn−1=1

n∏
j=1

D4
ηj−1

λ4
ηj−1

=
(

d∑
k=1

D4
kλ

4
k

)n
.

Moreover, due to the assumptions on H there exists a finite constant K > 0 which
is independent of d and H such that Kd,H ≤ K, cf. (61). Consequently, there
exists a constant C > 0 independent of d, ε and n such that for n sufficiently large

D2
n :=

d∑
η0,...ηn−1=1

28nK
4n
d,H · T

n
3

√
2π4dn

 n∏
j=1

D4
ηj−1

λ4
ηj−1

T 4nSn

∼

 n
15
2 Cn

Γ
(

2
3n+ 1

)
 1

4

and thus due to the comparison test∑
n≥1
Dn <∞.

Hence, there exists a constant C2 > 0 independent of d and ε such that

‖I2‖2
L2(Ω;H) ≤ C2C

4
Hm,T

(
s− u
su

)2γm
s2(Hm− 1

2−γm)(t− s)2(Hm− 1
2−γm),

and thus we can find a β2 ∈
(
0, 1

2

)
sufficiently small such that

∫ t

0

∫ t

0

‖I2‖2
L2(Ω;H)

|s− u|1+2β2
dsdu . C4

Hm,T <∞.

Equivalently, we can show for I3 that there exists a β3 ∈
(
0, 1

2

)
such that

∫ t

0

∫ t

0

‖I3‖2
L2(Ω;H)

|s− u|1+2β2
dsdu . C4

Hm,T <∞,

where CHm,T = C ·cHm due to Lemma B.4. Here, cHm is the constant in (14). Thus,
we can find a constant C̃ > 0 independent of Hm such that supH∈(0, 16 ) CH,T ≤ C <

∞. Finally, we get with βm := min{β1, β2, β3} that we can find γm, m ≥ 1, such
that

∑
m≥1

1
(1− 2−2(βm−αm))γ2

m

∫ t

0

∫ t

0

∥∥∥Dm
s X

d,ε
t −Dm

u X
d,ε
t

∥∥∥2

L2(Ω;H)

|s− u|1+2βm dsdu

≤
∑
m≥1

1
(1− 2−2(βm−αm))γ2

m

∫ t

0

∫ t

0

λ2
m

∑3
l=1 ‖Il‖

2
L2(Ω;H)

|s− u|1+2βm dsdu

.
∑
m≥1

λ2
mC̃

4

(1− 2−2(βm−αm))γ2
m

<∞,



30 D. BAÑOS, M.BAUER, T. MEYER-BRANDIS, AND F. PROSKE

uniformly in d ≥ 1 and ε > 0. Similarly, we can show that∑
m≥1

γ−2
m

∥∥∥DmXd,ε
t

∥∥∥2

L2(Ω;L2([0,1];H))
<∞ (40)

uniformly in d ≥ 1 and ε > 0 and consequently the compactness criterion Theo-
rem A.3 yields the result. �

4.5. FB adaptedness and strong solution. Finally, we can state and prove the
main statement of this paper

Theorem 4.11 Let b ∈ B([0, T ]×H;H). Then SDE (3) has a unique Malliavin
differentiable strong solution.

Proof. Let (Xt)t∈[0,T ] be a weak solution of SDE (3) which is unique in law due
to Proposition 3.5. Due to Lemma 4.9 we know that for every bounded globally
Lipschitz continuous function φ : H → R

φ(Xd,ε
t ) −−−−−−→

ε→0, d→∞
E
[
φ(Xt)|FWt

]
weakly in L2(Ω,FWt ). Furthermore, by Theorem 4.10 there exist subsequences
{dk}k≥1 and {εn}n≥1 such that

φ(Xdk,εn
t ) −−−−−−−→

n→∞, d→∞
φ
(
E
[
Xt|FWt

])
strongly in L2(Ω,FWt ). Uniqueness of the limit yields that Xt is FWt –measurable
for all t ∈ [0, T ]. Since FW = FB, we get that (Xt)t∈[0,T ] is a unique strong solution
of SDE (3). Malliavin differentiability follows by (40) and noting that the estimate
holds also for γm ≡ 1. �

5. Example

In this section we give an example of a drift function b ∈ B([0, T ] × H;H) to
show that the class does not merely contain the null function.

Let fk ∈ L1(`2;L∞([0, T ]; `2)), k ≥ 1, i.e. for all k ≥ 1 we have for all z ∈ `2

sup
t∈[0,T ]

|fk(t, z)| ≤ Cf
k <∞ sup

d≥1

∫
Rd

sup
t∈[0,T ]

|fk(t, z)|dz ≤ Df
k <∞, (41)

such that Cf , Df ∈ `1 and define for every k ≥ 1 an operator Ak : H → H which
is invertible on AkH such that for all k ≥ 1

det
(
A−1
k

√
Q
−1√
K
−1
)
≤ DAk <∞,

where DA ∈ `1. Then, we define

bk(t, y) := fk(t, τ−1Aky).
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This yields
sup
t∈[0,T ]

|bk(t, y)| = sup
t∈[0,T ]

|fk(t, τ−1Aky)| ≤ Cf
k ,∫

H
sup
t∈[0,T ]

∣∣∣∣bk (t,√Q√Ky)∣∣∣∣ dy =
∫
H

sup
t∈[0,T ]

∣∣∣∣fk (t, τ−1Ak
√
Q
√
Ky
)∣∣∣∣ dy

=
∫
τ−1AkH

sup
t∈[0,T ]

|fk(t, z)| det
(
A−1
k

√
Q
−1√
K
−1
)
dz ≤ Df

kDAk .

Due to the definition Cf ∈ `1 and Df · DA ∈ `1 and thus b ∈ B([0, T ]×H;H).
A possible choice for f is

fk(t, z) = Cf
k · e−t · e−D

f
k
|z|
2
(
a1{z∈A} + b1{z∈Ac}

)
,

where a, b ∈ R and A ⊂ H, which obviously fulfills the assumptions (41). The
operator Ak, k ≥ 1, can for example be chosen such that there exists a finite subset
Nk ⊂ N such that for all k ≥ 1∏

n∈Nk
λ−1
k

√
KHk

−1
≤ C.

and we have for every x ∈ H
Akx = DAk

∑
n∈Nk

x(n)en.

Then Ak is invertible on AkH for every k ≥ 1 and

det
(
A−1
k

√
Q
−1√
K
−1
)

= DAk
∏
n∈Nk

λ−1
k

√
KHk

−1
≤ CDAk .

Appendix A. Compactness Criterion

The following result which is originally due to [14] in the finite dimensional case
and which can be e.g. found in [9], provides a compactness criterion of square
integrable cylindrical Wiener processes on a Hilbert space.

Theorem A.1 Let (Bt)t∈[0,T ] be a cylindrical Wiener process on a separable
Hilbert space H with respect to a complete probability space (Ω,F , µ), where F is
generated by (Bt)t∈[0,T ]. Further, let LHS(H,R) be the space of Hilbert-Schmidt
operators from H to R and let D : D1,2 −→ L2(Ω;L2([0, T ]) ⊗ LHS(H,R)) be
the Malliavin derivative in the direction of (Bt)t∈[0,T ], where D1,2 is the space of
Malliavin differentiable random variables in L2(Ω).
Suppose that C is a self-adjoint compact operator on L2([0, T ])⊗ LHS(H,R) with
dense image. Then for any c > 0 the set

G =
{
G ∈ D1,2 : ‖G‖L2(Ω) +

∥∥∥C−1DG
∥∥∥
L2(Ω;L2([0,T ])⊗LHS(H,R))

≤ c
}

is relatively compact in L2(Ω).
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In this paper we aim at using a special case of the previous theorem, which is
more suitable for explicit estimations. To this end we need the following auxiliary
result from [14].

Lemma A.2 Denote by vs, s ≥ 0, with v0 = 1 the Haar basis of L2([0, 1]).
Define for any 0 < α < 1

2 the operator Aα on L2([0, 1]) by

Aαvs = 2iαvs, if s = 2i + j, i ≥ 0, 0 ≤ j ≤ 2i,
and

Aα1 = 1.
Then for α < β < 1

2 we have that

‖Aαf‖2
L2([0,1]) ≤ 2(‖f‖2

L2([0,1]) + 1
1− 2−2(β−α)

∫ 1

0

∫ 1

0

|f(t)− f(u)|2

|t− u|1+2β dtdu).

Theorem A.3 Let Dk be the Malliavin derivative in the direction of the k-th
component of (Bt)t∈[0,T ]. In addition, let 0 < αk < βk <

1
2 and γk > 0 for all

k ≥ 1. Define the sequence µs,k = 2−iαkγk, if s = 2i + j, i ≥ 0, 0 ≤ j ≤ 2i,
k ≥ 1. Assume that µs,k −→ 0 for s, k −→ ∞. Let c > 0 and G the collection of
all G ∈ D1,2 such that

‖G‖L2(Ω) ≤ c,∑
k≥1

γ−2
k

∥∥∥DkG
∥∥∥2

L2(Ω;L2([0,1]))
≤ c,

and
∑
k≥1

1
(1− 2−2(βk−αk))γ2

k

∫ 1

0

∫ 1

0

∥∥∥Dk
tG−Dk

uG
∥∥∥2

L2(Ω)

|t− u|1+2βk dtdu ≤ c.

Then G is relatively compact in L2(Ω).

Proof. As before denote by vs, s ≥ 0, with v0 = 1 the Haar basis of L2([0, 1])
and by e∗k = 〈ek, ·〉H , k ≥ 1, an orthonormal basis of LHS(H,R), where ek, k ≥
0, is an orthonormal basis of H. Define a self-adjoint compact operator C on
L2([0, 1])⊗ LHS(H,R) with dense image by

C(vs ⊗ e∗k) = µs,kvs ⊗ e∗k, s ≥ 0, k ≥ 1.
Then it follows for G ∈ D1,2 from Lemma A.2 that∥∥∥C−1DG

∥∥∥2

L2(Ω;L2([0,1])⊗LHS(H,R))

=
∑
k≥1

∑
s≥0

µ−2
s,kE[〈DG, vs ⊗ e∗k〉

2
L2([0,1])⊗LHS(H,R))]

=
∑
k≥1

γ−2
k

∥∥∥AαkDkG
∥∥∥2

L2(Ω;L2([0,1]))
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≤ 2
∑
k≥1

γ−2
k

∥∥∥DkG
∥∥∥2

L2(Ω;L2([0,1]))

+ 2
∑
k≥1

1
(1− 2−2(βk−αk))γ2

k

∫ 1

0

∫ 1

0

∥∥∥Dk
tG−Dk

uG
∥∥∥2

L2(Ω)

|t− u|1+2βk dtdu

≤M

for a constant M <∞. So using Theorem A.1 we obtain the result. �

Appendix B. Integration by parts formula

In this section we derive an integration by parts formula similar to [6] which
is used in the proof of Theorem 4.10 to verify the conditions of the compactness
criterion Theorem A.3. Before stating the integration by parts formula, we start
by giving some definitions and notations frequently used during the course of this
section.

Let n be a given integer. We consider the function f : [0, T ]n × (Rd)n → R of
the form

f(s, z) =
n∏
j=1

fj(sj, zj), s = (s1, . . . , sn) ∈ [0, T ]n, z = (z1, . . . , zn) ∈ (Rd)n,

(42)

where fj : [0, T ] × Rd → R, j = 1, . . . , n, are compactly supported smooth func-
tions. Further, we deal with the function κ : [0, T ]n → R which is of the form

κ(s) =
n∏
j=1

κj(sj), s ∈ [0, T ]n, (43)

with integrable factors κj : [0, T ]→ R, j = 1, . . . , n.
Let αj be a multi-index and Dαj its corresponding differential operator. For

α := (α1, . . . , αn) ∈ Nd×n
0 we define the norm |α| = ∑n

j=1
∑d
k=1 α

(k)
j and write

Dαf(s, z) =
n∏
j=1

Dαjfj(sj, zj).

Let k be an arbitrary integer. Given (s, z) = (s1, . . . , skn, z1, . . . , zn) ∈ [0, T ]kn×
(Rd)n and a shuffle permutation σ ∈ S(n, n) we define the shuffled functions

fσ(s, z) :=
kn∏
j=1

f[σ(j)](sj, z[σ(j)])

and

κσ(s) :=
kn∏
j=1

κ[σ(j)](sj),
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where [j] is equal to (j − in) if (in + 1) ≤ j ≤ (i + 1)n, i = 0, . . . , (k − 1). For a
multi-index α, we define

Ψf
α(θ, t, z,H, d) :=

(
d∏

k=1

√
(2 |α(k)|)!

) ∑
σ∈S(n,n)

∫
∆2n
θ,t

|fσ(s, z)| |∆s|−H(1+α[σ(∆)])ds,

(44)
and

Ψκ
α(θ, t,H, d) :=

(
d∏

k=1

√
(2 |α(k)|)!

) ∑
σ∈S(n,n)

∫
∆2n
θ,t

|κσ(s)| |∆s|−H(1+α[σ(∆)])ds, (45)

where for any a, b ∈ R

|∆s|
Hk

(
a+b·α(k)

[σ(∆)]

)
:= |s1|

Hk

(
a+b
(
α

(k)
[σ(1)]+α

(k)
[σ(2n)]

))
2n∏
j=2
|sj − sj−1|

Hk

(
a+b
(
α

(k)
[σ(j)]+α

(k)
[σ(j−1)]

))
,

|∆s|H(a+b·α[σ(∆)]) :=
d∏

k=1
|∆s|

Hk

(
a+b·α(k)

[σ(∆)]

)
.

Theorem B.1 Suppose the functions Ψf
α(θ, t, z,H, d) and Ψκ

α(θ, t,H, d) defined
in (44) and (45), respectively, are finite. Then,

Λf
α(θ, t, z) := (2π)−dn

∫
(Rd)n

∫
∆n
θ,t

n∏
j=1

fj(sj, zj)(−iuj)αje−i〈uj ,B̂
d,H
sj
−zj〉dsdu, (46)

where B̂d,H
t :=

(
B
H1
t√
KH1

, . . . ,
B
Hd
t√
KHd

)>
and KHk is the constant in Lemma 2.4, is a

square integrable random variable in L2(Ω) and

E
[∣∣∣Λf

α(θ, t, z)
∣∣∣2]≤ T

|α|
6

(2π)dnΨf
α(θ, t, z,H, d). (47)

Furthermore,

E
[∣∣∣∣∣
∫

(Rd)n
Λκf
α (θ, t, z)dz

∣∣∣∣∣
]
≤ T

|α|
12

√
2πdn

(Ψκ
α(θ, t,H, d)) 1

2

n∏
j=1
‖fj‖L1(Rd;L∞([0,T ])) , (48)

and the integration by parts formula∫
∆n
θ,t

Dαf
(
s, B̂d,H

s

)
ds =

∫
(Rd)n

Λf
α(θ, t, z)dz, (49)

holds.

Proof. For notational simplicity we consider merely the case θ = 0 and write
Λf
α(t, z) := Λf

α(0, t, z). For any integrable function g : (Rd)n −→ C we have that∣∣∣∣∣
∫

(Rd)n
g(u1, ..., un)du1...dun

∣∣∣∣∣
2
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=
∫

(Rd)n
g(u1, ..., un)du1...dun

∫
(Rd)n

g(un+1, ..., u2n)dun+1...du2n

=
∫

(Rd)n
g(u1, ..., un)du1...dun(−1)dn

∫
(Rd)n

g(−un+1, ...,−u2n)dun+1...du2n,

where the change of variables (un+1, ..., u2n) 7−→ (−un+1, ...,−u2n) was applied in
the last equality. Thus,
∣∣∣Λf

α(t, z)
∣∣∣2 = (2π)−2dn(−1)dn

∫
(Rd)2n

∫
∆n

0,t

n∏
j=1

fj(sj, zj)(−iuj)αje−i〈uj ,B̂
d,H
sj
−zj〉ds

×
∫

∆n
0,t

2n∏
j=n+1

f[j](sj, z[j])(−iuj)α[j]e−i〈uj ,B̂
d,H
sj
−z[j]〉dsdu

= (2π)−2dn(−1)dn i|α|
∑

σ∈S(n,n)

∫
(Rd)2n

 n∏
j=1

e−i〈zj ,uj+uj+n〉


×
∫

∆2n
0,t

fσ(s, z)
 2n∏
j=1

u
α[σ(j)]
σ(j)

 exp

−i
2n∑
j=1

〈
uσ(j), B̂

d,H
sj

〉 dsdu,
where we applied shuffling in the sense of (9). Taking the expectation on both
sides together with the independence of the fractional Brownian motions BHk ,
k = 1, ..., d, yields that

E
[∣∣∣Λf

α(t, z)
∣∣∣2]

= (2π)−2dn(−1)dn i|α|
∑

σ∈S(n,n)

∫
(Rd)2n

 n∏
j=1

e−i〈zj ,uj+uj+n〉


×
∫

∆2n
0,t

fσ(s, z)
 2n∏
j=1

u
α[σ(j)]
σ(j)

 exp

−1
2 Var

 2n∑
j=1

〈
uσ(j), B̂

d,H
sj

〉 dsdu
= (2π)−2dn(−1)dn i|α|

∑
σ∈S(n,n)

∫
(Rd)2n

 n∏
j=1

e−i〈zj ,uj+uj+n〉


×
∫

∆2n
0,t

fσ(s, z)
 2n∏
j=1

u
α[σ(j)]
σ(j)

 exp

−1
2

d∑
k=1

Var
 2n∑
j=1

u
(k)
σ(j)

BHk
sj√
KHk

 dsdu
= (2π)−2dn(−1)dn i|α|

∑
σ∈S(n,n)

∫
(Rd)2n

 n∏
j=1

e−i〈zj ,uj+uj+n〉


×
∫

∆2n
0,t

fσ(s, z)
 2n∏
j=1

u
α[σ(j)]
σ(j)

 d∏
k=1

exp
{
− 1

2KHk
(u(k)

σ )>Σku
(k)
σ

}
dsdu, (50)
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where u(k)
σ =

(
u

(k)
σ(1), . . . , u

(k)
σ(2n)

)>
and

Σk = Σk(s) :=
(
E
[
BHk
si
BHk
sj

])
1≤i,j≤2n

.

Moreover, we obtain for every σ ∈ S(n, n) that
∫

∆2n
0,t

|fσ(s, z)|
∫

(Rd)2n

d∏
k=1

 2n∏
j=1

∣∣∣u(k)
σ(j)

∣∣∣α(k)
[σ(j)]

 e− 1
2KHk

(u(k)
σ )>Σku

(k)
σ

 duds
=
∫

∆2n
0,t

|fσ(s, z)|
d∏

k=1

∫
R2n

 2n∏
j=1

∣∣∣u(k)
j

∣∣∣α(k)
[σ(j)]

 e− 1
2

〈
Σk
KHk

u(k),u(k)
〉
du(k)

 ds, (51)

where u(k) :=
(
u

(k)
1 , . . . , u

(k)
2n

)>
. For every 1 ≤ k ≤ d we have by using substitution

that ∫
R2n

 2n∏
j=1

∣∣∣u(k)
j

∣∣∣α(k)
[σ(j)]

 e− 1
2

〈
Σk
KHk

u(k),u(k)
〉
du(k) (52)

=
KnHk

(det Σk)1/2

∫
R2n

 2n∏
j=1

∣∣∣〈√KHkΣ
−1/2
k u(k), ẽj

〉∣∣∣α(k)
[σ(j)]

 e− 1
2〈u(k),u(k)〉du(k).

Considering a standard Gaussian random vector Z ∼ N (0, Id2n), we get that
∫
R2n

 2n∏
j=1

∣∣∣〈Σ−1/2
k u(k), ẽj

〉∣∣∣α(k)
[σ(j)]

 e− 1
2〈u(k),u(k)〉du(k) (53)

= (2π)nE
 2n∏
j=1

∣∣∣〈Σ−1/2
k Z, ẽj

〉∣∣∣α(k)
[σ(j)]

.
Using a Brascamp-Lieb type inequality which is due to Lemma C.1, we further get
that

E

 2n∏
j=1

∣∣∣〈Σ−1/2
k Z, ẽj

〉∣∣∣α(k)
[σ(j)]

≤ √perm(Ak)=

√√√√√√√ ∑
π∈S

2|α(k)|

2|α(k)|∏
i=1

a
(k)
i,π(i),

where
∣∣∣α(k)

∣∣∣ := ∑n
j=1 α

(k)
j and perm(Ak) is the permanent of the covariance matrix

Ak = (a(k)
i,j )1≤i,j≤2|α(k)| of the Gaussian random vector(〈
Σ−1/2
k Z, ẽ1

〉
, ...,

〈
Σ−1/2
k Z, ẽ1

〉
︸ ︷︷ ︸

α
(k)
[σ(1)] times

, . . . ,
〈
Σ−1/2
k Z, ẽ2n

〉
, ...,

〈
Σ−1/2
k Z, ẽ2n

〉
︸ ︷︷ ︸

)
α

(k)
[σ(2n)] times

,
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and Sm denotes the permutation group of size m. Using an upper bound for the
permanent of positive semidefinite matrices which is due to [3], we find that

perm(Ak)=
∑

π∈S
2|α(k)|

2|α(k)|∏
i=1

a
(k)
i,π(i) ≤ (2

∣∣∣α(k)
∣∣∣)! 2|α(k)|∏

i=1
a

(k)
i,i . (54)

Now let ∑j−1
l=1 α

(k)
[σ(l)] + 1 ≤ i ≤ ∑j

l=1 α
(k)
[σ(l)] for some fixed j ∈ {1, ..., 2n}. Then

a
(k)
i,i = E

[〈
Σ−1/2
k Z, ẽj

〉 〈
Σ−1/2
k Z, ẽj

〉]
.

Substitution gives moreover that

E
[〈

Σ−1/2
k Z, ẽj

〉〈
Σ−1/2
k Z, ẽj

〉]
= (det Σk)1/2 1

(2π)n
∫
R2n

u2
j exp

{
−1

2 〈Σku, u〉
}
du. (55)

Applying Lemma C.2 we get∫
R2n

u2
j exp

{
−1

2 〈Σku, u〉
}
du = (2π)(2n−1)/2

(det Σk)1/2

∫
R
v2 exp

{
−1

2v
2
}
dv

1
σ2
j

= (2π)n
(det Σk)1/2

1
σ2
j

, (56)

where σ2
j := Var

(
BHk
sj

∣∣∣BHk
s1 , ..., B

Hk
s2n without BHk

sj

)
.

Subsequently, we aim at the application of the strong local non-determinism
property of the fractional Brownian motions, cf. Lemma 2.4, i.e. for all 0 < r <
t ≤ T exists a constant KHk depending on Hk and T such that

Var
(
BHk
t

∣∣∣BHk
s , |t− s| ≥ r

)
≥ KHkr

2Hk .

Hence, we get due to Lemma C.5 and Lemma C.6 that

(det Σk(s))1/2 ≥ K
(2n−1)

2
Hk

|s1|Hk |s2 − s1|Hk ... |s2n − s2n−1|Hk , (57)
and

σ2
1 ≥ KHk |s2 − s1|2Hk ,

σ2
j ≥ KHk min

{
|sj − sj−1|2Hk , |sj+1 − sj|2Hk

}
, 2 ≤ j ≤ 2n− 1,

σ2
2n ≥ KHk |s2n − s2n−1|2Hk .

Thus,
2n∏
j=1

σ
−2α(k)

[σ(j)]
j ≤ K

−2|α(k)|
Hk

T 4Hk|α(k)||∆s|−2Hkα
(k)
[σ(∆)] . (58)

Concluding from (54), (55), (56), and (58) we have that

perm(Ak)≤
(
2
∣∣∣α(k)

∣∣∣)! 2|α(k)|∏
i=1

a
(k)
i,i



38 D. BAÑOS, M.BAUER, T. MEYER-BRANDIS, AND F. PROSKE

≤
(
2
∣∣∣α(k)

∣∣∣)! 2n∏
j=1

(
(det Σk)1/2 1

(2π)n
(2π)n

(det Σk)1/2
1
σ2
j

)α(k)
[σ(j)]

≤
(
2
∣∣∣α(k)

∣∣∣)!K−2|α(k)|
Hk

T 4Hk|α(k)||∆s|−2Hkα
(k)
[σ(∆)] .

Consequently,

E

 2n∏
j=1

∣∣∣〈Σ−1/2
k Z, ẽj

〉∣∣∣α(k)
[σ(j)]

≤ √(2 |α(k)|)!K−|α
(k)|

Hk
T 2Hk|α(k)||∆s|−Hkα

(k)
[σ(∆)] .

Therefore we get from (50), (51), (52), (53), and (57) that

E
[∣∣∣Λf

α(t, z)
∣∣∣2]

≤ (2π)−2dn ∑
σ∈S(n,n)

∫
∆2n

0,t

|fσ(s, z)|
d∏

k=1

(∫
R2n

∣∣∣u(k)
∣∣∣α(k)

e
− 1

2KHk
〈Σku(k),u(k)〉

du(k)
)
ds

≤ (2π)−dn
∑

σ∈S(n,n)

∫
∆2n

0,t

|fσ(s, z)|
d∏

k=1

 K
n+|α(k)|
Hk

(det Σk(s))
1
2
E

 2n∏
j=1

∣∣∣∣〈Σ−
1
2

k Z, ẽj

〉∣∣∣∣α
(k)
σ(j)

 ds
≤ (2π)−dn

∑
σ∈S(n,n)

∫
∆2n

0,t

|fσ(s, z)|
(

d∏
k=1
|∆s|−HkK|α

(k)|+ 1
2

Hk

)

×
d∏

k=1

(√
(2 |α(k)|)!K−|α

(k)|
Hk

T 2Hk|α(k)||∆s|−Hkα
(k)
[σ(∆)]

)
ds

≤ (2π)−dnT
|α|
6

(
d∏

k=1

√
KHk

√
(2 |α(k)|)!

) ∑
σ∈S(n,n)

∫
∆2n

0,t

|fσ(s, z)| |∆s|−H(1+α[σ(∆)])ds.

Since supk≥1 KHk ∈ (0, 1), inequality (47) holds.
Next we prove the estimate (48). With inequality (47), we get that

E
[∣∣∣∣∣
∫

(Rd)n
Λκf
α (θ, t, z)dz

∣∣∣∣∣
]
≤
∫

(Rd)n
E
[∣∣∣Λκf

α (θ, t, z)
∣∣∣2] 1

2
dz

≤ T
|α|
12

√
2πdn

∫
(Rd)n

(Ψκf
α (θ, t, z,H, d)) 1

2dz.

Taking the supremum over [0, T ] with respect to each function fj, i.e.∣∣∣f[σ(j)](sj, z[σ(j)])
∣∣∣ ≤ sup

sj∈[0,T ]

∣∣∣f[σ(j)](sj, z[σ(j)])
∣∣∣ , j = 1, ..., 2n,

yields that

E
[∣∣∣∣∣
∫

(Rd)n
Λκf
α (θ, t, z)dz

∣∣∣∣∣
]
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≤ T
|α|
12

√
2πdn

max
σ∈S(n,n)

∫
(Rd)n

 2n∏
j=1

∥∥∥f[σ(j)](·, z[σ(j)])
∥∥∥
L∞([0,T ])

 1
2

dz

×

 d∏
k=1

√
(2 |α(k)|)!

∑
σ∈S(n,n)

∫
∆2n
θ,t

|κσ(s)| |∆s|−H(1+α[σ(∆)])ds
 1

2

= T
|α|
12

√
2πdn

max
σ∈S(n,n)

∫
(Rd)n

 2n∏
j=1

∥∥∥f[σ(j)](·, z[σ(j)])
∥∥∥
L∞([0,T ])

 1
2

dz (Ψκ
α(θ, t,H, d)) 1

2

= T
|α|
12

√
2πdn

∫
(Rd)n

n∏
j=1
‖fj(·, zj)‖L∞([0,T ]) dz (Ψκ

α(θ, t,H, d)) 1
2

= T
|α|
12

√
2πdn

 n∏
j=1
‖fj‖L1(Rd;L∞([0,T ]))

 (Ψκ
α(θ, t,H, d)) 1

2 .

Finally, we show the integration by parts formula (49). Note that a priori one
cannot interchange the order of integration in (46), since e.g. for m = 1, f ≡ 1
one gets an integral of the Donsker-Delta function which is not a random variable
in the usual sense. Therefore, we define for R > 0,

Λf
α,R(θ, t, z) := (2π)−dn

∫
B(0,R)

∫
∆n
θ,t

n∏
j=1

fj(sj, zj)(−iuj)αje−i〈uj ,B̂
d,H
sj
−zj〉dsdv,

where B(0, R) := {v ∈ (Rd)n : |v| < R}. This yields

|Λf
α,R(θ, t, z)| ≤ CR

∫
∆n
θ,t

n∏
j=1
|fj(sj, zj)|ds

for a sufficient constant CR. Under the assumption that the above right-hand side
is integrable over (Rd)n, similar computations as above show that Λf

α,R(θ, t, z) →
Λf
α(θ, t, z) in L2(Ω) as R → ∞ for all θ, t and z. By Lebesgue’s dominated con-

vergence theorem and the fact that the Fourier transform is an automorphism on
the Schwarz space, we obtain∫

(Rd)n
Λf
α(θ, t, z)dz = lim

R→∞

∫
(Rd)n

Λf
α,R(θ, t, z)dx

= lim
R→∞

(2π)−dn
∫

(Rd)n

∫
B(0,R)

∫
∆n
θ,t

n∏
j=1

fj(sj, zj)(−iuj)αje−i〈uj ,B̂
d,H
sj
−zj〉dzduds

= lim
R→∞

∫
∆n
θ,t

∫
B(0,R)

(2π)−dn
∫

(Rd)n

n∏
j=1

fj(sj, zj)ei〈uj ,zj〉dz(−iuj)αje−i〈uj ,B̂
d,H
sj 〉duds

= lim
R→∞

∫
∆n
θ,t

∫
B(0,R)

n∏
j=1

f̂j(s,−uj)(−iuj)αje−i〈uj ,B̂
d,H
sj 〉duds
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=
∫

∆n
θ,t

Dαf
(
s, B̂d,H

s

)
ds

which is exactly the integration by parts formula (49). �

Applying Theorem B.1 we obtain the following crucial estimate (compare [1],
[2], [6], and [7]):

Proposition B.2 Let the functions f and κ be defined as in (42) and (43),
respectively. Further, let 0 ≤ θ′ < θ < t ≤ T and for some m ≥ 1

κj(s) = (KHm(s, θ)−KHm(s, θ′))εj , θ < s < t,

for every j = 1, ..., n with (ε1, ..., εn) ∈ {0, 1}n. Let α ∈ (Nd
0)n be a multi-index.

Assume there exists δ such that

−
d∑

k=1
Hk

(
1 + 2α(k)

j

)
+
(
Hm −

1
2 − γm

)
≥ δ > −1

for all j = 1, . . . n and d ≥ 1, where γm ∈ (0, Hm) is sufficiently small. Then there
exist constants CT (depending on T ) and Kd,H (depending on d and H), such that
for any 0 ≤ θ < t ≤ T we have

E

∣∣∣∣∣∣
∫

∆n
θ,t

 n∏
j=1

Dαjfj(sj, B̂sj)κj(sj)
 ds

∣∣∣∣∣∣


≤
Kn
d,H · T

|α|
12

√
2πdn

(
CT

(
θ − θ′

θθ′

)γm
θ(Hm− 1

2−γm)
)∑n

j=1 εj n∏
j=1
‖fj(·, zj)‖L1(Rd;L∞([0,T ]))

×

(∏d
k=1

(
2
∣∣∣α(k)

∣∣∣)!) 1
4 (t− θ)−

∑d

k=1Hk(n+2|α(k)|)+(Hm− 1
2−γm)∑n

j=1 εj+n

Γ(2n−∑d
k=1Hk(2n+ 4 |α(k)|) + 2(Hm − 1

2 − γm)∑n
j=1 εj)

1
2

.

In order to prove this result we need the following two auxiliary results.

Lemma B.3 Let H ∈
(
0, 1

2

)
and t ∈ [0, T ] be fixed. Then, there exists β ∈(

0, 1
2

)
and a constant C > 0 independent of H such that

∫ t

0

∫ t

0

|KH(t, θ′)−KH(t, θ)|2
|θ′ − θ|1+2β dθdθ′ ≤ C <∞.

Proof. Let 0 ≤ θ′ < θ ≤ t be fixed. Write

KH(t, θ)−KH(t, θ′) = cH

[
ft(θ)− ft(θ′) +

(1
2 −H

)
(gt(θ)− gt(θ′))

]
,

where ft(θ) :=
(
t
θ

)H− 1
2 (t− θ)H− 1

2 and gt(θ) :=
∫ t
θ
fu(θ)
u
du.
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We continue with the estimation of KH(t, θ) − KH(t, θ′). First, observe that
there exists a constant 0 < C < 1 such that

y−α − x−α

(x− y)γ ≤ Cy−α−γ, (59)

for every 0 < y < x < ∞ and α := (1
2 − H) ∈

(
0, 1

2

)
as well as 0 < γ < 1

2 − α.
Indeed, rewriting (59) yields using the substitution z := x

y
, z ∈ (1,∞),

y−α − x−α

(x− y)γ yα+γ = 1− z−α
(z − 1)γ =: g(z).

Furthermore, since α + γ < 1 we get that

lim
z→1

g(z) = lim
z→1

1− z−α
(z − 1)γ = lim

z→1

1 + αz−α−1

γ(z − 1)γ−1 = 0,

and
lim
z→∞

g(z) = 0.

Moreover, for 2 ≤ z ≤ ∞ we get the upper bound

0 ≤ g(z) ≤ 1− z−α
(z − 1)γ <

1
1 = 1,

and for 1 < z < 2 we have that

g(z) = zα − 1
(z − 1)γzα <

z − 1
(z − 1)γ(z − 1)α = (z − 1)1−γ−α ≤ 1.

This shows inequality (59) which then implies for 0 < γ < H that

ft(θ)− ft(θ′) =
(
t

θ
(t− θ)

)H− 1
2
−
(
t

θ′
(t− θ′)

)H− 1
2

.
(
t

θ
(t− θ)

)H− 1
2−γ

t2γ
(θ − θ′)γ

(θθ′)γ . (t− θ)H−
1
2−γ (θ − θ′)γ

(θθ′)γ .

Further,

gt(θ)− gt(θ′) =
∫ t

θ

fu(θ)− fu(θ′)
u

du−
∫ θ

θ′

fu(θ′)
u

du

≤
∫ t

θ

fu(θ)− fu(θ′)
u

du

.
(θ − θ′)γ

(θθ′)γ
∫ t

θ

(u− θ)H− 1
2−γ

u
du

≤ (θ − θ′)γ
(θθ′)γ θH−

1
2−γ

∫ ∞
1

(v − 1)H− 1
2−γ

v
dv

.
(θ − θ′)γ

(θθ′)γ θH−
1
2−γ
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.
(θ − θ′)γ

(θθ′)γ θH−
1
2−γ(t− θ)H− 1

2−γ.

Consequently, we get for γ ∈ (0, H), 0 < θ′ < θ < t ≤ T , that

KH(t, θ)−KH(t, θ′) ≤ C · cH
(θ − θ′)γ

(θθ′)γ θH−
1
2−γ(t− θ)H− 1

2−γ,

where C > 0 is a constant merely depending on T . Thus∫ t

0

∫ θ

0

(KH(t, θ)−KH(t, θ′))2

|θ − θ′|1+2β dθ′dθ

.
∫ t

0

∫ θ

0

|θ − θ′|−1−2β+2γ

(θθ′)2γ θ2H−1−2γ(t− θ)2H−1−2γdθ′dθ

=
∫ t

0
θ2H−1−4γ(t− θ)2H−1−2γ

∫ θ

0
|θ − θ′|−1−2β+2γ(θ′)−2γdθ′dθ

=
∫ t

0
θ2H−1−4γ−2β(t− θ)2H−1−2γΓ(−2β + 2γ)Γ(−2γ + 1)

Γ(−2β + 1) dθ

.
∫ t

0
θ2H−1−4γ−2β(t− θ)2H−1−2γdθ

= Γ(2H − 2γ)Γ(2H − 4γ − 2β)
Γ(4H − 6γ − 2β) t4H−6γ−2β−1 <∞,

for sufficiently small γ and β. On the other hand, we have that∫ t

0

∫ t

θ

(KH(t, θ)−KH(t, θ′))2

|θ − θ′|1+2β dθ′dθ

.
∫ t

0
θ2H−1−4γ(t− θ)2H−1−2γ

∫ t

θ

|θ − θ′|−1−2β+2γ

(θ′)2γ dθ′dθ

≤
∫ t

0
θ2H−1−6γ(t− θ)2H−1−2γ

∫ t

θ
|θ − θ′|−1−2β+2γdθ′dθ

.
∫ t

0
θ2H−1−6γ(t− θ)2H−1−2βdθ . t4H−6γ−2β−1.

Therefore, ∫ t

0

∫ t

0

(KH(t, θ)−KH(t, θ′))2

|θ − θ′|1+2β dθ′dθ <∞.

�

Lemma B.4 Let H ∈
(
0, 1

2

)
, 0 ≤ θ < t ≤ T and (ε1, . . . , εn) ∈ {0, 1}n be fixed.

Assume wj +
(
H − 1

2 − γ
)
εj > −1 for all j = 1, . . . , n. Then there exists a finite

constant CH,T > 0 depending only on H and T such that for γ ∈ (0, H)∫
∆n
θ,t

n∏
j=1

(KH(sj, θ)−KH(sj, θ′))εj |sj − sj−1|wjds
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≤
(
CH,T

(
θ − θ′

θθ′

)γ
θ(H−

1
2−γ)

)∑n

j=1 εj

Πγ(n) (t− θ)
∑n

j=1(wj+(H− 1
2−γ)εj)+n,

where

Πγ(m) :=
∏n
j=1 Γ(wj + 1)

Γ
(∑n

j=1wj +
(
H − 1

2 − γ
)∑n

j=1 εj + n
) . (60)

Proof. Recall, that for given exponents a, b > −1 and some fixed sj+1 > sj we
have ∫ sj+1

θ
(sj+1 − sj)a(sj − θ)bdsj = Γ (a+ 1) Γ (b+ 1)

Γ (a+ b+ 2) (sj+1 − θ)a+b+1.

Due to Lemma B.3 we have that for every γ ∈ (0, H), 0 < θ′ < θ < sj ≤ T ,

KH(sj, θ)−KH(sj, θ′) ≤ CH,T
(θ − θ′)γ

(θθ′)γ θH−
1
2−γ(sj − θ)H−

1
2−γ,

for CH,T := C · cH , where cH is the constant in (14) and C > 0 is some constant
merely depending on T . Consequently, we get that∫ s2

θ
|KH(s1, θ)−KH(s1, θ

′)|ε1|s2 − s1|w2|s1 − θ|w1ds1

≤ Cε1
H,T

(θ − θ′)γε1
(θθ′)γε1 θ(H−

1
2−γ)ε1

∫ s2

θ
|s2 − s1|w2|s1 − θ|w1+(H− 1

2−γ)ε1ds1

= Cε1
H,T

(θ − θ′)γε1
(θθ′)γε1 θ(H−

1
2−γ)ε1 Γ (ŵ1) Γ (ŵ2)

Γ (ŵ1 + ŵ2) (s2 − θ)w1+w2+(H− 1
2−γ)ε1+1,

where
ŵ1 := w1 +

(
H − 1

2 − γ
)
ε1 + 1, ŵ2 := w2 + 1.

Noting that
n−1∏
j=1

Γ
(∑j

l=1wl +
(
H − 1

2 − γ
)∑j

l=1 εl + j
)

Γ (wj+1 + 1)
Γ
(∑j+1

l=1 wl +
(
H − 1

2 − γ
)∑j

l=1 εl + j + 1
) ≤ Πγ(n).

and iterative integration yields the desired formula. �

Finally, we are able to give the proof of Proposition B.2.
Proof of Proposition B.2. The integration by parts formula (49) yields that∫

∆n
θ,t

 n∏
j=1

Dαjfj(sj, B̂sj)κj(sj)
 ds =

∫
Rdn

Λκf
α (θ, t, z)dz.

Taking the expectation and applying Theorem B.1 we get that

E

∣∣∣∣∣∣
∫

∆n
θ,t

 n∏
j=1

Dαjfj(sj, B̂sj)κj(sj)
 ds

∣∣∣∣∣∣
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≤ T
|α|
12

√
2πdn

(Ψκ
α(θ, t,H, d)) 1

2

n∏
j=1
‖fj‖L1(Rd;L∞([0,T ])) ,

where

Ψκ
α(θ, t,H, d) :=

(
d∏

k=1

√
(2 |α(k)|)!

)

×
∑

σ∈S(n,n)

∫
∆2n

0,t

|∆s|−H(1+α[σ(∆)])
2n∏
j=1

(KHm(sj, θ)−KHm(sj, θ′))ε[σ(j)]ds.

Under the assumption −∑d
k=1Hk(1+α

(k)
[σ(j)] +α

(k)
[σ(j−1)])+(Hm− 1

2−γm)ε[σ(j)] > −1
for all j = 1, ..., 2n, we can apply Lemma B.4 and thus get

Ψκ
α(θ, t,H, d)

≤
∑

σ∈S(n,n)

(
CT

(
θ − θ′

θθ′

)γm
θ(Hm− 1

2−γm)
)∑2n

j=1 ε[σ(j)]

Πγ(2n)

×
(

d∏
k=1

√
(2 |α(k)|)!

)
(t− θ)−

∑d

k=1Hk(2n+4|α(k)|)+(Hm− 1
2−γm)

∑2n
j=1 ε[σ(j)]+2n,

where Πγ(2n) is defined as in (60). We define the constant Kd,H by

Kd,H := 2 sup
j=1,...,2n

Γ
(

1−
d∑

k=1
Hk

(
1 + α

(k)
[σ(j)] + α

(k)
[σ(j−1)]

))
(61)

and thus an upper bound of Πγ(2n) is given by

Πγ(2n) ≤
K2n
d,H

22nΓ
(
−∑d

k=1Hk (2n+ 4 |α(k)|) +
(
Hm − 1

2 − γm
)∑2n

j=1 ε[σ(j)] + 2n
) .

Note that ∑2n
j=1 ε[σ(j)] = 2∑n

j=1 εj and

#S(n, n) =
(

2n
n

)
= 22n
√
π

Γ
(
n+ 1

2

)
Γ(n+ 1) ≤ 22n.

Hence, it follows that
(Ψκ

k (θ, t,H, d)) 1
2

≤ Kn
d,H

(
CT

(
θ − θ′

θθ′

)γm
θ(Hm− 1

2−γm)
)∑n

j=1 εj

×

(∏d
k=1

(
2
∣∣∣α(k)

∣∣∣)!) 1
4 (t− θ)−

∑d

k=1 Hk(n+2|α(k)|)+(Hm− 1
2−γm)∑n

j=1 εj+n

Γ
(
2n−∑d

k=1Hk (2n+ 4 |α(k)|) + 2
(
Hm − 1

2 − γm
)∑n

j=1 εj
) 1

2
,

�
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Proposition B.5 Let the functions f and κ be defined as in (42) and (43),
respectively. Let 0 ≤ θ < t ≤ T and

κj(s) = (KHm(s, θ))εj , θ < s < t,

for every j = 1, . . . , n with (ε1, . . . , εn) ∈ {0, 1}n. Let α ∈ (Nd
0)n be a multi-index

and suppose that there exists δ such that

−
d∑

k=1
Hk

(
1 + 2α(k)

j

)
+
(
Hm −

1
2

)
≥ δ > −1

for all j = 1, . . . , n and d ≥ 1. Then there exist constants CT (depending on T )
and Kd,H (depending on d and H) such that for any 0 ≤ θ < t ≤ T we have

E

∣∣∣∣∣∣
∫

∆n
θ,t

 n∏
j=1

Dαjfj(sj, B̂sj)κj(sj)
 ds

∣∣∣∣∣∣


≤
Kn
d,H · T

|α|
12

√
2πdn

(
CT θ

(Hm− 1
2 )
)∑n

j=1 εj
n∏
j=1
‖fj(·, zj)‖L1(Rd;L∞([0,T ]))

×

(∏d
k=1

(
2
∣∣∣α(k)

∣∣∣)!) 1
4 (t− θ)−

∑d

k=1 Hk(n+2|α(k)|)+(Hm− 1
2)∑n

j=1 εj+n

Γ(2n−∑d
k=1Hk(2n+ 4 |α(k)|) + 2(Hm − 1

2)∑n
j=1 εj)

1
2

.

The proof of Proposition B.5 is similar to the one of Proposition B.2 by using the
subsequent lemma instead of Lemma B.4 and thus it is omitted in this manuscript.

Lemma B.6 Let H ∈
(
0, 1

2

)
, 0 ≤ θ < t ≤ T and (ε1, . . . , εn) ∈ {0, 1}n be

fixed. Assume wj +
(
H − 1

2

)
εj > −1 for all j = 1, . . . , n. Then there exists a

finite constant CH,T > 0 depending only on H and T such that∫
∆n
θ,t

n∏
j=1

(KH(sj, θ))εj |sj − sj−1|wjds

≤
(
CH,T θ

(H− 1
2)
)∑n

j=1 εj Π0(n) (t− θ)
∑n

j=1(wj+(H− 1
2)εj)+n,

where Π0 is defined in (60).

Proof. Using similar arguments as in the proof of Lemma B.3 we get the following
estimate

|KH(sj, θ)| ≤ CH,T |sj − θ|H−
1
2 θH−

1
2

for every 0 < θ < sj < T and CH,T := C · cH , where cH is the constant in (14) and
C > 0 is some constant merely depending on T . Thus,∫ s2

θ
(KH(s1, θ))ε1 |s2 − s1|w2|s1 − θ|w1ds1

≤ Cε1
H,T θ

(H− 1
2)ε1

∫ s2

θ
|s2 − s1|w2 |s1 − θ|w1+(H− 1

2)ε1ds1
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= Cε1
H,T θ

(H− 1
2)ε1 Γ

(
w1 +

(
H − 1

2

)
ε1 + 1

)
Γ (w2 + 1)

Γ
(
w1 + w2 +

(
H − 1

2

)
ε1 + 2

) (s2 − θ)w1+w2+(H− 1
2)ε1+1.

Proceeding similar to the proof of Lemma B.4 yields the desired estimate. �

Remark B.7. Note that
d∏

k=1

(
2
∣∣∣α(k)

∣∣∣)! ≤ √2πde
|α|
2

Γ
(

5
2 |α|+ 1

)
√

5π|α|
.

Indeed, since for n ≥ 1 sufficiently large we have by Stirling’s formula that
√

2πn
(
n

e

)n
≤ n! ≤ e

1
12n
√

2πn
(
n

e

)n
,

we get by assuming without loss of generality that |α(k)| ≥ 1 for all 1 ≤ k ≤ d,
that

d∏
k=1

(
2|α(k)|

)
! ≤

d∏
k=1

e
1

24|α(k)|
√

4π|α(k)|
(

2|α(k)|
e

)2|α(k)|

≤ e
d
24

√
8
5π

d
d∏

k=1

(5
2 |α

(k)|
) |α(k)|

2
( 5

2 |α
(k)|
e

)2|α(k)|

≤
√

2πd
d∏

k=1

( 5
2 |α|
e

) 5
2 |α

(k)|

e
|α(k)|

2

≤
√

2πde
|α|
2

( 5
2 |α|
e

) 5
2 |α|

≤
√

2πde
|α|
2

Γ
(

5
2 |α|+ 1

)
√

5π|α|
.

Appendix C. Technical Results

The following technical result can be found in [26].

Lemma C.1 Assume that X1, ..., Xn are real centered jointly Gaussian random
variables, and Σ = (E[XjXk])1≤j,k≤n is the covariance matrix, then

E[|X1| ... |Xn|]≤
√

perm(Σ),

where perm(A) is the permanent of a matrix A = (aij)1≤i,j≤n defined by

perm(A)=
∑
π∈Sn

n∏
j=1

aj,π(j)

for the symmetric group Sn.

The next lemma corresponds to [12, Lemma 2]:
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Lemma C.2 Let Z1, ..., Zn be mean zero Gaussian random variables which are
linearly independent. Then for any measurable function g : R −→ R+ we have
that∫

Rn
g(v1)e−

1
2 Var

(∑n

j=1 vjZj

)
dv1...dvn = (2π)n−1

2

(det Cov(Z1, ..., Zn)) 1
2

∫
R
g
(
v

σ1

)
e−

v2
2 dv,

where σ2
1 := Var(Z1 |Z2, ..., Zn ).

Remark C.3. Note that here linearly independence is meant in the sense that
det Cov(Z1, ..., Zn) 6= 0.

Lemma C.4 Let a ∈ `p, 1 ≤ p <∞. Then, for every n ≥ 1 and d ≥ 1
d∑

k1,...,kn=1

n∏
j=1

akj =
(

d∑
k=1

ak

)n
, (62)

and

lim
d→∞

d∑
k1,...,kn

n∏
j=1
|akj |p = (‖a‖`p)n . (63)

Proof. We proof equation (62) by induction. For n = 1 the result holds. Therefore
we assume that (62) holds for n and we show that it also holds for n + 1. Thus,
we get by the induction hypothesis that

d∑
k1,...,kn+1=1

n+1∏
j=1

akj =
d∑

kn+1=1
akn+1

 d∑
k1,...,kn=1

n∏
j=1

akj


=

d∑
kn+1=1

akn+1

(
d∑

k=1
ak

)n
=
(

d∑
k=1

ak

)n+1

.

Equation (63) is an immediate consequence of (62) and the continuity of the
function f(x) = xn for fixed n ≥ 1. �

The subsequent lemmas are due to [4].

Lemma C.5 Let (X1, . . . , Xn) be a mean-zero Gaussian random vector. Then,

det Cov(X1, . . . , Xn)= Var(X1)Var(X2|X1)· · ·Var(Xn|Xn−1, . . . , X1).

Lemma C.6 For any square integrable random variable X and σ-algebras G1 ⊂
G2

Var(X|G1)≥ Var(X|G2).
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